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Abstract

In this paper, we present a framework that enables computer model evaluation oriented
towards answering the question:

Does the computer model adequately represent reality?

The proposed validation framework is a six-step procedure based upon Bayesian statistical
methodology. The Bayesian methodology is particularly suited to treating the major issues
associated with the validation process: quantifying multiple sources of error and uncertainty in
computer models; combining multiple sources of information; and updating validation assess-
ments as new information is acquired. Moreover, it allows inferential statements to be made
about predictive error associated with model predictions in untested situations.

The framework is implemented in two test bed models (a vehicle crash model and a resistance
spot weld model) that provide context for each of the six steps in the proposed validation process.

∗This research was supported by grants from General Motors and the National Science Foundation (Grant DMS-
0073952) to the National Institute of Statistical Sciences.
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1 Introduction

1.1 Motivation and overview

We view the most important question in evaluation of a computer model to be

Does the computer model adequately represent reality?

In practice, the processes of computer model development and validation often occur in concert;
aspects of validation interact with and feed back to development (e.g., a shortcoming in the model
uncovered during the validation process may require change in the mathematical implementation).
In this paper, however, we address the process of computer model development only to the extent
that it interacts with the framework we envision for evaluation; the bulk of the paper focuses
instead on answering the above basic question. In particular, we do not address the issue of code
verification. General discussions of the entire V&V process, with discussion of many other pertinent
issues, can be found in Roache (1998), Oberkampf and Trucano (2000), Cafeo and Cavendish (2001),
Easterling (2001), Pilch et al. (2001), and Trucano et al. (2002).

Tolerance bounds: To motivate the approach we take to model evaluation, it is useful to begin at
the end, and consider the type of outputs that will result from the methodology. Only very rarely
will it be the case that a computer model can be said to be a completely accurate representation
of the real process being modeled, and hence we do not primarily focus on answering the yes/no
question “Is the model correct?”1 In the vast majority of the cases, the relevant question is instead
“Does the model provide predictions that are accurate enough for the intended use of the model?”
While there are several concepts within this question that deserve – and will be given – careful
definition, the central issue is simply that of assessing the accuracy of model predictions. This will
be done by presenting tolerance bounds, such as 5.17 ± 0.44, for a model prediction 5.17, with the
interpretation that there is a specified chance (e.g., 80%) that the corresponding true process value
would lie within the specified range. Such tolerance bounds should be given whenever predictions
are made, i.e., they should routinely be included along with any predictions arising from use of the
model.

This focus on giving tolerance bounds, rather than stating a yes/no answer as to model validity,
arises for three reasons:

1. Models rarely give highly accurate predictions over the entire range of inputs of possible
interest, and it is often difficult to characterize regions of accuracy and inaccuracy.

2. The degree of accuracy that is needed can vary from one application of the computer model
to another.

3. Tolerance bounds incorporate model bias, the principal symptom of model inadequacy; accu-
racy of the model cannot simply be represented by a variance or standard error.

1It is possible to ask and answer this question within the proposed framework – see Section 9 – but the question
is often not a relevant question.
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All these difficulties are obviated by the simple device of routinely presenting tolerance bounds
along with model predictions. Thus, at a different input value, the model prediction and tolerance
bound might be 6.28 ± 1.6, and it is immediately apparent that the model is considerably less
accurate at this input value. Either of the bounds, 0.44 or 1.6, might be acceptable or unacceptable
predictive accuracies, depending on the intended use of the model.

Bayesian analysis: Producing tolerance bounds is not easy. Here is a partial list of the hurdles
one faces.

• There are uncertainties in model inputs or parameters, and these uncertainties can be of a
variety of types: based on data, expert opinion, or simply an ‘uncertainty range.’

• When model runs are expensive, only limited model-run data may be available.

• Field data of the actual process under consideration may be limited and noisy.

• Data may be of a variety of types, including functional data.

• Model-run data and field data may be observed at different input values.

• One may desire to ‘tune’ unknown parameters of the computer model based on field data,
and at the same time (because of sparse data) apply the validation methodology.

• There may be more tuning parameters than data, so that the tuning parameters are not even
identifiable.

• The computer model itself will typically be highly non-linear.

• Accounting for possible model bias is challenging.

• Validation should be viewed as an accumulation of evidence to support confidence in the
model outputs and their use, and the methodology needs to be able to update its current
conclusions as additional information arrives.

Overcoming these hurdles requires a powerful and flexible methodology; the only one we know
that can accommodate all of these different factors is the Bayesian approach to assessment and
analysis of uncertainty, together with its modern computational implementation via Markov Chain
Monte Carlo analysis (see, e.g., Robert and Casella, 1999). The Bayesian approach is discussed in
Section 5.

Bridging two philosophies: At the risk of considerable oversimplification, it is useful to catego-
rize the approaches to model evaluation as being in one of two camps. In one camp, evaluation is
performed primarily by comparing model output to field data from the real process being modeled.
The common rationale for this philosophy is the viewpoint that the only way to see if a model
actually works is to see if its predictions are correct. We will call this the predictive approach to
evaluation.
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The second camp primarily focuses on the model itself, and tries to assess the accuracy or
uncertainty corresponding to each constructed element of the model. The common rationale for
this philosophy is that, if all the elements of the model (including computational elements) can be
shown to be correct, then logically the model must give accurate predictions. We will call this the
physical approach to model evaluation.

Our own view lies primarily in the predictive camp, in that a modeler faces considerable diffi-
culty in convincing others that all elements of the model have been correctly constructed, without
demonstration of validity on actual field data. We recognize that a lack of sufficient field data often
drives modelers to focus on validation through the physical approach, but an absence of field data
will always leave the model suspect.

That said, it is worth noting that Bayesian methodology bridges both these philosophies. First,
one can specify a prior probability that the computer model is correct and update this probability
based on any available data. Thus someone in the physical camp might declare that their prior
probability is 0.96 that the model is correct. If field data is then obtained, a Bayesian computation
(see Section 9) might yield a posterior probability of 0.99 (in the case of supporting data) or 0.009
(in the case of non-supporting data) that the model is correct. Those in the predictive camp
(including ourselves) believe that such extreme prior specification is excessively informative and
only rarely justifiable.

Even in the predictive approach, however, Bayesian analysis allows utilization of prior infor-
mation about elements of the model from the physical approach (either expert opinion or partial
scientific knowledge), together with field data, in the construction of the tolerance bounds for model
predictions; it incorporates whatever information is available to produce defensible quantification
of the adequacy of the model’s representation of reality. Furthermore, such physical knowledge can
significantly reduce the amount of field data that is needed for predictive validation.

Side benefits of the methodology: Because the investment in understanding and using this
methodology is admittedly significant, we mention some of the side benefits that arise from the
implementation as done in the body of this paper.

1. When a bias in the model is detected by comparison with field data, the methodology auto-
matically allows one to adjust the prediction by the estimated bias, and provides tolerance
bounds for this adjusted prediction. This can result in considerably more accurate predictions
than use of the model alone (or use of the field data alone).

2. A fast approximation to the computer model is available for use in situations, such as opti-
mization, where it may be too expensive to use the computer model itself.

3. Predictions and tolerance bounds can be given for applications of the computer model to new
situations in which there is little – or no – field data, assuming information about ‘related’
scenarios is available.

A Caveat: The process of model validation is inherently highly statistical, and is inherently a
hard statistical problem. This is not to say that the scientific and mathematical sides of the V&V
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process are not also of central importance, but the basic problem cannot be solved without use
of sophisticated statistical methodology. Indeed, the statistical problem is so hard that one rarely
sees analyses that actually produce tolerance bounds for computer model predictions.

The intent of this paper is essentially to provide a ‘proof of concept,’ that it is possible to
provide tolerance bounds for predictions of computer models, while taking into account all the
uncertainties present in the problem. However, the computations required in the methodology we
propose can be intensive, especially when there are large numbers of model inputs, large numbers
of unknown parameters, or a large amount of data (model-run or field). The test bed examples we
consider in this paper are relatively modest in these dimensions, and we have yet to see how the full
methodology scales-up to more complex settings (although some components of the methodology
are known to scale-up to considerably more complex situations). It is likely that a variety of
simplifications and/or innovations will be needed in such settings in order to apply the methodology.

Overview: In this paper we will restrict consideration to computer models that are deterministic,
as opposed to stochastic2. Section 1.2 provides an outline of the framework we recommend for
computer model evaluation. Two testbed models are introduced in Section 1.3, a resistance spot
welding model and a crash model. Background details of the test bed models are in Appendices A
and B.

The proposed methodology for model evaluation is presented in Sections 2 through 6, with
illustrations on the two test bed models. Sections 7 through 10 introduce a variety of generalizations
that are needed to deal with specific contexts.

To prevent notational overload, we introduce notation and concepts as they arise in the eval-
uation framework. Appendices C, D, E and F present some of the technical details needed for
implementation of the methodology.

1.2 Sketch of the framework

Validation can be thought of as a series of activities or steps. These are roughly ordered by
the sequence in which they are typically performed. The completion of some or all in the series of
activities will typically lead to new issues and questions, requiring revision and revisiting of some or
all of the activities, even if the model is unchanged. New demands placed on the model and changes
in the model through new development make validation a continuing process. The framework must
allow for such dynamics.

Step 1. Specify model inputs and parameters with associated uncertainties or ranges
- the Input/Uncertainty (I/U) map. This step requires considerable expertise to help set
priorities among a (possibly) vast number of inputs. As information is acquired through undertaking
further steps of the validation process, the I/U map is revisited, revised and updated.

Step 2. Determine evaluation criteria. The defining criteria must account for the context in

2In Section 10.6, a generalization to allow for numerical ‘wobble’ in a deterministic model is given; it can also be
used to accomodate stochastic models.
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which the model is used, the feasibility of acquiring adequate computer-run and field data, and the
methodology to permit an evaluation. In turn the data collection and analyses will be critically
affected by the criteria. Moreover, initially stated criteria will typically be revisited in light of
constraints and results from later analyses.

Step 3. Data collection and design of experiments. Both computer and field experiments
are part of the validation (and development) processes; multiple stages of experimentation will be
common. The need to design the computer runs along with field experiments can pose non-standard
issues. As noted above, any stage of design must interact with the other parts of the framework,
especially the evaluation criteria.

Step 4. Approximation of computer model output. Model approximations (fast surrogates)
are usually key for enabling the analyses carried out in Step 5; fast surrogates are essential also
when the model is used for optimization of e.g., a manufacturing product design.

Step 5. Analyses of model ouput; comparing computer model output with field data.
Uncertainty in model inputs will propagate to uncertainty in model output and estimating the
resulting output distribution is often required. The related ‘sensitivity analysis’ focuses on ascer-
taining which inputs most strongly affect outputs, a key tool in refining the I/U map.

Comparing model output with field data has several aspects.

– The relation of reality to the computer model (“reality = model + bias”)

– Statistical modeling of the data (computer runs and field data where “field data = reality +
measurement error”)

– Tuning/calibrating model input parameters based on the field data

– Updating uncertainties in the parameters (given the data)

– Accuracy of prediction given the data

The methods used here rely on a Bayesian formulation; the details are in Section 5. The
fundamental goal of assessing model accuracy is addressed there.

Step 6. Feedback information into current validation exercise and feed-forward in-

formation into future validation activities. Feedback refers to use of results from Step 5 to
improve aspects of the model, as well as to refine aspects of the validation process. Feed-forward
refers to the process of utilizing validations of current models to predict the validity of related
future models, for which field data are lacking.

1.3 Testbeds

The test beds provide context for implementing each activity and also prompt consideration of a
full variety of issues. The description of the validation framework, in Section 2, does not capture
the details and nuances encountered in any implementation. The details of implementation are,
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indeed, the essence of the validation process and the complexities they engender have, in the past,
been a barrier to performing acceptable validations. This fleshing out of details for the test beds
is done throughout Sections 2–8 where each activity/step of validation is accompanied by explicit
application to the test bed models. The result is the addition of concreteness to the generalities of
the methods.

Testbed 1. The Resistance Spot Welding Model (SPOT WELD): In resistance spot
welding, two metal sheets are compressed by water-cooled copper electrodes, under an applied
load, L. Figure 14 in Appendix A is a simplified representation of the spot weld process,
illustrating some of the essential features for producing a weld. A direct current of magnitude C

is supplied to the sheets via the two electrodes to create concentrated and localized heating at
the interface where the two sheets have been pressed together by the applied load (the so-called
faying surface). The heat produced by the current flow across the faying surface leads to melting
and, after cooling, a weld “nugget” is formed.

The resistance offered at the faying surface is particularly critical in determining the mag-
nitude of heat generated. Because contact resistance at the faying surface, as a function of
temperature, is poorly understood a nominal function is specified and “tuned” to field data.
The effect of this tuning on the behavior of the model is the focus of the test bed example.

The physical properties of the materials will change locally as a consequence of local increase
in temperature. Young’s modulus and the yield stress of the sheet will fall (that is, the metal
will “soften”) resulting in more deformation and increase in the size of the faying contact sur-
face, further affecting the formation of the weld. At the same time, the electrical and thermal
conductivities will decrease as the temperature rises; all of which will affect the rate of heat
generation and removal by conduction away from the faying surface.

The thermal/electrical/mechanical physics of the spot weld process is modeled by a coupling
of partial differential equations that govern heat and electrical conduction with those that govern
temperature-dependent, elastic/plastic mechanical deformation (Wang and Hayden, 1999).

Finite element implementations are used to provide a computer model of the electro-thermal
conceptual model. Similarly, a finite element implementation is made for the equilibrium and
constitutive equations that comprise the conceptual model of mechanical/thermal deformation.
These two computer models are implemented using a commercial code (ANSYS).

Details of the inputs and outputs of the models are in Appendix A and are summarized in
Table 1. The particular issues faced are spelled out as we proceed through the exposition in the
following sections.

Testbed 2. The Crash Model (CRASH): The effect of a collision of a vehicle with a barrier
is routinely done through a computer model implemented as a non-linear dynamic analysis
code using a finite element representation of the vehicle. Proving ground tests with prototype
vehicles must ultimately be made to meet mandated standards for crashworthiness. But, the
computer models play an integral part in the design of the vehicle to assure crashworthiness
before manufacturing the prototypes. How well the models perform is therefore crucial to the
manufacturing process.

CRASH is implemented via a commercial code, LS-DYNA. Our focus is on the velocity
changes after impact at key positions on the vehicle, such as the driver seat and radiator.
Details of the model and a typical set of inputs are in Appendix B. Geometric representation
of the vehicle and the material properties play critical roles in the behaviour of the vehicle after
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impact and the necessary detailing of these inputs leads to very costly (in time) computer runs.
Field data involve crashing of prototype vehicles and therefore costly in dollars. CRASH is then
inherently data-limited, presenting a basic challenge to assessing the validity of the model.

There are many variables and sources of uncertainty in the vehicle manufacturing process

and proving ground test procedures that, in turn, induce uncertainties in the test results. The

acceleration and velocity histories of two production vehicles of the same type, subjected to

30mph zero degree rigid barrier frontal impact tests, as shown in Figure 15 demonstrate the

differences in “replicate” crashes. There are a variety of materials used in components of the

vehicle and, consequently, a variety of material properties to deal with, not all of which may be

satisfactorily specified.

2 Understanding the Model and Its Uses (Steps 1 and 2)

The beginning of the validation process is understanding the uncertainties associated with the
computer model itself, and determining how the model is to be used.

2.1 Step 1. Specify model inputs and parameters with associated uncertainties

or ranges - the Input/Uncertainty (I/U) Map

Understanding what is known and not known about a computer model can be important in its evalu-
ation. A convenient way to organize such information is through what we call the Input/Uncertainty
map. (This is related to the idea of a PIRT - see Pilch et al., 2001.) The map has four attributes:

a) A list of model features or inputs of potential importance

b) A ranking of the importance of each input

c) Uncertainties, either distributions or ranges of possible values, for each input

d) Current status of each input describing how the input is currently treated in the model.

The I/U map is dynamic: as information is acquired and the validation process proceeds, the
attributes, especially b)-d), will change or be updated. This will become more evident following
Steps 4-6.

The inputs in the map are drawn from the development process. They will include parameters
inherent to the scientific and engineering assumptions and mathematical implementation, and nu-
merical parameters associated with the implementing code; in short, all the ingredients necessary
to make the model run. Because this list can be enormous, the more important parameters must
be singled out to help structure the validation process by providing a sense, albeit imperfect, of
priorities. We adopt a scale of 1-5 for ranking the inputs with 1 indicating only minor likely impact
on prediction error and 5 indicating significant potential impact.
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SPOT WELD: The purpose of the spot weld model is to investigate the process parameters
for welding aluminum. The I/U map of the model is in Table 1. The list of inputs in Table
1 is more fully described in Appendix A. Initially, only three inputs have rank 5 based on
the model developer’s assessment. These three parameters (and gauge) are the focus of the
initial validation experiments; earlier experiments by the model developer led to the impact
assessments appearing in the table. The controllable parameters, current, load, and gauge, will
be given ranges when the experiments are designed. In the current context, validation is with
laboratory data and “no uncertainty” is appropriate when current and load levels are set in
the laboratory. If, however, validation is required at the production level then uncertainties in
current and load may be significant. In brief, the I/U map is context dependent.

There are several specific items connected with the I/U map in Table 1 that are worth

noting. First, the most significant specified uncertainty (impact factor 5) in the model elements

is that of the contact resistance. The model incorporates contact resistance through an equation

that, for the faying surface, has a multiplicative constant u about which it is only known that

u lies in the interval [0.8, 8.0]. It will be necessary to tune this parameter of the model with

field data. The second most significant uncertainty in the model (impact factor 4) is the linear

approximation for stress/strain. The modeler was unable to specify the uncertainty regarding

this input, and so error in this element will simply have to enter into the overall unknown (and

to be estimated) bias of the model.

Table 7 in Appendix B gives the corresponding I/U map for the crash model.
Initial impact assessments will be based on experience to reflect a combined judgment of the

inherent sensitivity of the input (the extent to which small changes in the input would affect the
output) and the range of uncertainty in the input. These will be revised through sensitivity analyses
and ‘tuning with data’ that occur later in the process. Inputs about which we are “clueless” might
be singled out for attention at some point along the validation path but the effect of “missing”
inputs (i.e., non-modeled features) may never be quantifiable or only emerge after all effects of
“present” inputs are accounted for.

In model validation, considerable attention is often paid to the issue of numerical accuracy of
the implemented model – for instance, in assessing if numerical solvers and finite element (FEM)
codes have ‘converged’ to the solution of the driving differential equations. This is an important
consideration and, as detailed in Cafeo and Cavendish (2001), is an issue of model and code ver-
ification. It should ideally be addressed early in the model development process and prior to the
validation activity emphasized in this paper.

It is often the case, however, that convergence will not have been obtained; e.g., modelers may
simply use the finest mesh size that is computationally feasible, recognizing that this mesh size
is not sufficient to have achieved convergence. The method we are describing for validation still
works. The error introduced by a lack of convergence becomes part of the ‘bias’ of the model that
is to be assessed (see Section 3). The I/U map should, of course, clearly indicate the situation
involving such convergence. This means that parameters such as grid size may be confounded with
other assumptions about the model making it more difficult to improve the model. Ideally, this
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INPUT IMPACT UNCERTAINTY CURRENT
STATUS

Geometry electrode
symmetry-2d 3 unspecified fixed

cooling channel 1 unspecified fixed
gauge unclear unspecified 1, 2mm

materials unclear Aluminum (2 types fixed
× 2 surfaces)

Stress/ 4 unspecified fixed
strain piecewise linear (worse at high T)

C0, C1, σs 3 unspecified fixed
1/σ = u · f ; f fixed 3 unspecified fixed by modeler

contact u = 0 tuned to data
resistance (electrode/sheet) 5 u ∈ [0.8, 8.0] for 1 metal

u =tuning (faying)
thermal 2 unspecified fixed

conductivity κ
current 5 no uncertainty controllable

load 5 no uncertainty controllable
mass density (ρ) 1 unspecified fixed
specific heat (c) 1 unspecified fixed

mesh 1 unspecified convergence/speed
numerical M/E coupling time 1 unspecified compromise
parameters boundary 1 unspecified

conditions fixed
initial conditions 1 unspecified fixed

Table 1: The I/U map for the spot weld model

could be done through designed experiments, varying values of the numerical parameters in order
to assess numerical accuracy.

2.2 Step 2. Determine evaluation criteria

Evaluation of a model depends on the context in which it is used. Two key elements of evaluation
criteria are:

• Specification of an evaluation criterion (or criteria) defined on model output

• Specification of the domain of input variables over which evaluation is sought.

Even if only one evaluation criterion is initially considered, other evaluation criteria inevitably
emerge during the validation process. In fact, it is often desirable to have multiple outputs to
compare with reality to help assess the usefulness of the model. The overall performance of the
model may then depend on the outcomes of the validation process for several evaluation criteria –
the model may fail for some and pass for others – leading ultimately to follow-on analyses about
when and how the model should be used in prediction.
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Informal evaluations are typical during the development process – does the computer model
produce results that appear consistent with scientific and engineering intuition? Later in the
validation process these informal evaluations may need to be quantified and incorporated in the
“formal” process. Sensitivity analyses may, in some respects, be considered part of evaluation if,
for example, the sensitivities confirm (or conflict with) scientific judgment. We defer discussion of
sensitivity to Section 10.1.

The evaluation criteria can introduce complexities that would need to be addressed at Steps 4
- 6, but may also affect the choices made here. For example, an evaluation criterion that leads to
comparisons of curves or surfaces or images places greater demands on the analyst than simpler
scalar comparisons.

Of necessity, the specifications must take into account the feasibility of collecting data, particu-
larly field data, to carry out the validation. This can be further complicated by the need to calibrate
or tune the model using the collected data; the tuning itself being driven by the specifications.

SPOT WELD: Two evaluation criteria were initially posed:

I. Size of the nugget after 8-cycles

II. Size of the nugget as a function of the number of cycles

The first criterion is of interest because of the primary production use of the model; the second
as a possible aid in reducing the number of cycles to achieve a desired nugget size. Ideally the
evaluation would be based directly on the strength of the weld, but weld diameter is taken as
a surrogate because of the feasibility of collecting laboratory data on the latter. (Of course,
if nugget size is not strongly correlated with weld strength, these criteria would probably be
inappropriate.) In production, the spot welding process results in a multiple set of welds, but
the evaluation criterion considered here involves only a single weld. Criterion (II) was later
discarded as a result of the difficulty during data collection of getting reliable computer runs
producing output at earlier times than 8-cycles.

Specification of the feasible domains of the input variables is another aspect of formulating
the evaluation criteria. For the spot weld model, these domains are:

– Material: Aluminum 5182-O and Aluminum 6111-T4

– Surface: treated or untreated

– Gauge (mm): 1 or 2

– Current (kA): 21 to 26 for 1mm aluminum; 24 to 29 for 2mm aluminum

– Load (kN): 4.0 to 5.3

Material and surface might enter the model through other input variables relating to properties

of materials. Our initial specification in Table 1 considers material, surface and gauge as fixed.

The tuning parameter, u, has the range indicated and is the only other input that is not fixed.

CRASH: For the first experiment the input consists solely of the impact velocity v. The
specific output data to be analyzed is the velocity of the “Sensing and Diagnostic Module”,
SDM, situated under the driver’s seat, relative to a free-flight dummy. This relative velocity is
obtained by subtracting the impact velocity v from the actual SDM velocity (it being assumed
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that the dummy maintains velocity v over the time interval of interest). The resulting functions
vary (at least theoretically) between 0 at the time of impact t = 0 and −v at the time the vehicle
is stationary.

The evaluation criterion we consider is the SDM velocity calculated 30ms before the time
the SDM displacement (relative to the free-flight dummy), DISP, reaches 125mm. Call this
quantity CRITV. The airbag takes around 30ms to fully deploy, which is why this particu-
lar evaluation criterion, CRITV, is important. Our analysis takes account of the dependence
between displacement and velocity (displacement is the integral of velocity) by working with
the probability distribution of the velocity and then finding the implied distribution of the
displacement.

The process we follow can be adapted to treat other evaluation criteria such as,

• Time at which SDM displacement reaches 125mm

• SDM velocity when SDM displacement reaches 250mm and 350mm

The evaluation criterion

• Velocity at the center of the radiator, RDC, 30ms before SDM displacement reaches 125mm

poses different issues because it requires a combined analysis of the functional data from two

sensors, one located at the radiator center, the other under the driver’s seat.

3 Data Collection (Step 3)

Both computer and field (laboratory or production) experiments are part of the validation and
development processes and produce data that are essential for

• Developing needed approximations to (expensive) numerical models

• Assessing bias and uncertainty in model predictions

• Studying sensitivity of a model to inputs

• Identifying suspect components of models

• Designing and collecting data that build on, and augment, existing, or historical, data.

The iterative and interactive nature of the validation and development processes will result in
multiple stages of computer experiments and even field experiments.

Typically, an effort is made to construct experiments that yield data over the ranges of what are
considered to be the key input values. For low-dimensional input spaces, this can be done rather
informally. For instance, in CRASH, the key inputs are the impact speed of the vehicle and the
collision barrier type. Table 2 exhibits the entire set of model inputs and measured field inputs for
the available data. The type of data resulting from each experiment is indicated in Figure 15 of
Appendix B.

When the input space is of larger dimension, it is preferable to use formal “space-filling” strate-
gies of choosing the input values at which to experiment. For instance, in the spot weld test bed
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Impact velocity (km/h) barrier type Impact velocity (km/h)
used in model of field tests

19.3 straight frontal 19.3
25.5 straight frontal 25.5
28.9 straight frontal 28.9
32.1 straight frontal 32.1
35.3 straight frontal 35.3
38.4 straight frontal 38.4
41.3 straight frontal 41.3, 41.3
49.3 straight frontal 49.4, 49.2, 49.4, 49.3, 49.3, 49.4
56.4 straight frontal 56.4
22.5 left angle 22.5
32.2 left angle 32.2
40.2 left angle 40.2, 41.4, 41.5
41.9 left angle 41.9
49.3 left angle 49.5, 49.2
56.2 left angle 56.2
57.3 left angle 57.3
28.9 right angle 28.9
31.9 right angle 31.9
41.7 right angle 41.7, 41.8
48.3 right angle 48.3
19.3 center pole 19.3
25.5 center pole 25.5
32.0 center pole 32.0
36.8 center pole 36.8
40.3 center pole 40.3
48.6 center pole 48.6

Table 2: Available input data

there is one discrete and three continuous input variables of major importance, and covering the
3-dimensional space with a limited number of runs (field or model) requires careful experimental
design. Among the most useful designs in such contexts is the Latin Hypercube Design (McKay,
Conover and Beckman(1979)). We utilize code from W. Welch to produce such designs.

SPOT WELD: For the spot weld model there was limited model data about the tuning pa-
rameter u. The initial computer experiment was therefore aimed at assessing the effect of u.
The inputs to be varied are C = current, L = load, G = gauge, and u. The other inputs
were held fixed. The cost – thirty minutes per computer run – is high so a limited number,
26, of runs were planned for each of the two gauge sizes. The 26 runs for 1 mm metal covered
the 3-dimensional rectangle, [20,27]x[3.8,5.5]x[1]x[1.0,7.0], in C, L, G, u space, while those for
the 2mm metal covered the 3-dimensional rectangle, [23,30]x[3.8,5.5]x[2]x[0.8,8.0]. The explicit
design values obtained from the Welch code are in Table 3, along with the model output and
the corresponding laboratory data for the nugget diameter.

The computer runs exhibited some aberrant behavior. Many (17) runs failed to produce a
meaningful outcome at cycle 8; these runs were eliminated. For reasons that are not yet clear
many runs were unable to produce reliable data for earlier cycle times; as a result evaluation
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criteria depending on early cycle times were abandoned. The data retained (35 runs) are used
in the subsequent analyses.

Gauge u Load Current Nugget Gauge u Load Current Nugget
Dia. Dia.

(mm) (-) (kN) (kA) (mm) (mm) (-) (kN) (kA) (mm)
1 6.52 4.072 26.44 – 2 4.544 3.936 27.76 7.15
1 4.60 4.684 21.68 5.64 2 5.696 4.14 25.52 6.39
1 3.64 5.024 23.64 – 2 1.088 4.684 28.32 6.38
1 7.00 4.412 23.36 – 2 0.8 4.276 24.40 4.87
1 6.76 4.888 25.04 – 2 3.68 4.412 26.08 6.47
1 1.00 4.82 22.52 4.36 2 4.832 4.616 23.00 6.68
1 3.40 4.616 27.00 – 2 7.136 4.344 27.20 6.71
1 5.32 4.48 20.84 6.12 2 4.256 5.228 24.68 6.54
1 2.92 5.092 20.56 5.00 2 3.392 4.004 23.28 5.97
1 1.48 5.364 21.12 4.53 2 1.952 4.48 23.84 5.72
1 2.20 4.004 21.40 5.20 2 2.528 3.8 24.96 6.23
1 2.68 4.344 25.88 – 2 2.24 4.208 29.72 –
1 2.44 5.50 23.08 – 2 1.376 5.024 25.80 5.46
1 4.36 3.80 25.32 – 2 7.424 4.072 28.88 –
1 1.24 4.208 24.76 6.06 2 6.272 4.548 29.16 7.36
1 6.04 4.752 20.00 – 2 6.848 5.364 23.56 –
1 5.56 5.432 25.60 – 2 3.968 4.888 29.44 7.16
1 1.96 4.956 26.16 6.69 2 3.104 5.432 28.60 6.61
1 5.80 3.936 23.92 7.17 2 5.12 5.5 26.64 5.98
1 4.84 4.14 22.80 – 2 6.56 3.868 26.36 6.74
1 3.16 3.868 22.24 5.71 2 5.984 4.956 24.12 5.32
1 6.28 5.228 21.96 5.38 2 8 5.092 28.04 –
1 1.72 4.548 24.20 5.85 2 2.816 4.82 26.92 6.70
1 5.08 5.16 26.72 – 2 5.408 5.16 30.00 –
1 4.12 5.296 24.48 6.87 2 1.664 5.296 27.48 6.02
1 3.88 4.276 20.28 4.91 2 7.712 4.752 25.24 5.50

Table 3: Spot weld data from 52 model runs. Run failures indicated by –

To provide insight into the space-filling nature of the Latin Hypercube Design used for gauge=1
in Table 3, the 2-dimensional projections of this design are shown in Figure 1. An important feature
of such designs is that they exercise the code over a wide range of inputs and often unearth code
difficulties (for example, in Table 3 there were many failed runs for reasons not yet determined).
Such designs are effective for a wide variety of purposes (sensitivity analyses, response surface
approximations to model output, predicting outcomes of the specified evaluation criteria). In
contexts where initial computer experimentation points to narrowing, or altering, the region for
exploration specified in Step 2, new designs or augmentation of an initial design must be found.
For extremely expensive model runs (or field runs), sequential designs might be considered, where
each additional design point is chosen ‘optimally’ based on the information from previous runs.

Field data will usually be harder to obtain than computer experimental data. As a result,
designing the field data will depend more crucially on the specifications in Section 2.2 and specific
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Figure 1: Latin Hypercube Design used for spot weld

methods cannot be stated in advance.
In Sections 4, 5 and 7 we set down an informal description and assumptions for the computer

model data and field data. This includes consideration of calibration parameters, function output
and the treatment of the arguments of such functions. A more formal description can be found in
Bayarri et al. (2002).

4 Model Approximation (Step 4)

It is often of interest to see the effect of uncertainty in model inputs on model outputs. When the
code is cheap to run, then straight simulation (i.e., randomly generate input variables from their
distributions and compute the corresponding model outputs) is a practical option for determining
the output distribution. More refined methods relying on pseudorandom (e.g., Latin hypercube)
generation of inputs can also be employed – at least when the number of input variables is modest
– and somewhat extend the range of applicability of straight simulation. None of these techniques
are feasible, however, for expensive codes, and one must then resort to model approximations to
obtain output distributions. Such approximations can also be useful in their own right, for at least
the following reasons.

• It might not be feasible to directly employ the model ‘in the field’, whereas a fast approxi-
mation to the model could be directly employed.

• It is often desired to perform an optimization over inputs. Common optimization algorithms
can be too expensive to implement with the computer model, but can be implemented with
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the approximation (or at least the approximation can be used to significantly narrow the
range of input values over which optimization with the computer model needs to be done).

• Finding optimal designs for additional model-development or validation experiments can re-
quire a fast approximation to the computer model.

• In Step 5, we will make crucial use of model approximations in implementing the calibration
and validation methodology.

There are four basic techniques that can be useful in model approximation: (i) use of mod-
els having lower resolution (e.g., larger mesh size) or including only significant basis elements
(based on, e.g., Proper Orthogonal Decomposition or Principal Components methods); (ii) lin-
earization/Gaussian error accumulation; (iii) response surface methodology, including Gaussian
processes and neural networks; (iv) Bayesian networks, which allow uncertainty transference be-
tween sub-models from which the model is constructed. The first technique is always an option,
and can be combined with the other methods; of course, evaluation of the error introduced by using
a model of lower resolution (or with a smaller basis) can be difficult. The second technique, which
essentially linearizes the model so that (Gaussian) input distributions can be passed through the
model using linear Gaussian updating, is useful if it is feasible to work with the underlying code of
the model and if linearization does not introduce severe bias. The use of Bayesian networks is not
addressed here.

A very useful general tool, for models whose output depends smoothly on inputs (very common
in engineering and scientific processes), is the response surface technique. (It should be noted that,
even when the underlying process is not a smooth function of the inputs, one is often primarily
interested in features of the output that are smooth.) The approach we recommend has been
successfully used when the number of input variables is less than 20 (typically requiring less than
10 runs per input) and even as high as 40 (although then several hundreds of model runs may be
needed for accurate fitting). Below we briefly describe this technique. The particular technique we
recommend meshes well with the validation analysis proposed in Step 5.

Notation: Denote model output by yM (x,u), where x is a vector of controllable inputs and u
is a vector of unknown calibration and/or tuning parameters in the model. Sometimes we write
z = (x,u).

In specific examples u may be absent. The goal is to approximate yM (x,u) by a function ŷM (x,u),
to be called the model approximation, which is much easier to compute. In addition, it is desirable
to have a variance function V M (x,u) that measures the accuracy of ŷM(x,u) as an estimate of
yM (x,u). A response surface approach that achieves both these goals is the Gaussian process re-
sponse surface approximation (GASP), described in Sacks et al. (1989) and Kennedy and O’Hagan
(2001); the approach is outlined below.

SPOT WELD: The vector of controllable inputs is x = (C, L, G), the tuning parameter is
u. Use of GASP with the data from Table 3 leads to the response surface approximation to
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yM (C, L, G, u) that is exhibited in Figure 2. We do not explicitly show the variance function,
but it is available. For instance, at (C, L, G, u) = (26, 5, 2, 4), the response surface approx-
imation to yM (26, 5, 2, 4) is ŷM (26, 5, 2, 4) = 6.12, and the variance of the approximation is
V M (26, 5, 2, 4) = 0.0046. At the values of the actual model data of Table 3, i.e. the solid dots in
the figures below, the response surface approximation is exact; it ‘passes through’ these points.
The slight up-curve at the edges, for extreme values of u, occurs because the model data in those
regions is very sparse and an overall mean level was used in the GASP analysis (as opposed to,
say, a linear function). This has essentially no effect on ultimate predictions, since we will see
that the central values of u are those that are most relevant.
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Figure 2: GASP response surface approximation ŷM to yM for the spot weld model, constructed
from the data in Table 3. The surfaces show estimated weld diameter, for the two gauge values, as
a function of load and current for various values of the tuning parameter u. The solid dots denote
model data yM (C,L,G, u) and are plotted on the surface corresponding to the closest value of u.

CRASH: The controllable inputs are x = (v, B), where v is the impact velocity and B is the

barrier type. There is no tuning parameter.

Let yM = (yM (x1,u1), . . . , yM (xm,um)) denote the vector of m evaluations of the model at
the inputs DM = {(xi,ui) : i = 1, . . . ,m}. The computer model is exercised only at the inputs
DM , so that yM (z) = yM (x,u) is effectively unknown for other inputs z = (x,u). Thus, in
the Bayesian framework, we assign yM (z) a prior distribution, specifically, a stationary Gaussian
process with mean and covariance functions governed by unknown parameters. (In application, we
always only deal with a finite set of zi, in which case the Gaussian process at these points reduces to
a multivariate normal distribution.) Choice of the mean function is discussed below, but discussion
of the covariance function is delayed until Appendix C.1.
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The mean function of the Gaussian process will be assumed to be of the form Ψ(·)θL where
Ψ(z) is a specified 1 × k vector function of the input z and θL is a k × 1 vector of unknown
parameters. A constant mean (k = 1, Ψ(z) = 1, and θL = θ) is often satisfactory, if one plans
only to use the model approximation within the range of the available model-run data, but a more
complicated mean function can be useful if the model approximation is to be used outside the range
of the data. (When outside the range of the model-run data, the Gaussian process approximation
to the model will gradually tend towards its estimated mean function, so that an accurate estimated
mean function will provide more accurate model approximations.) This can be especially important
when features such as seasonal trends are present. Formally, the mean function above does not
allow the presence of a known constant (e.g., c + Ψ(·)θL), but this can be easily accommodated
by carrying out the analysis with the Gaussian process defined by subtracting c from the original
process.

A secondary benefit of introducing a mean function that is a reasonable approximation to the
model is that it will often result in smaller variances for the model approximations. If, however, a
more complicated mean function is used but is not a more reasonable approximation to the model,
it will result in larger variances, since it will contain more parameters that must be estimated.
No firm guidelines are available as to whether a simple mean function or a carefully developed
mean function are best. Our recommendation is to try to incorporate into the mean function any
obvious trends that exist in the model output but, again, even a constant mean function is often
satisfactory.

CRASH: The computer model output corresponding to velocity, in a typical case, is indicated

in Figure 15 (the curve on the right). Such curves are clearly better modeled by a linear function

of time than a constant in time. Furthermore, we know the initial velocity v of the vehicle, so

use of the mean function v(1 − θLt) for the Gaussian process will clearly do a better job of

approximating the computer model than would a constant mean. (It should be emphasized,

however, that the methodology will typically provide accurate within-sample approximation

to the model output no matter what mean function is chosen for the Gaussian process.) We

actually follow common practice in this area and first transform the data by subtracting the

initial velocity, leading to what are called ‘relative velocity’ curves; for relative velocity curves,

the natural mean function would be −θLvt, corresponding to choosing k = 1 and Ψ(v, t) = − v t

in the above notation. Note that since the theoretical range of the relative velocity is from 0 (at

time t = 0) to −v (at time ts, when the vehicle reaches stationarity), θL can here be interpreted

as 1/ts.

For specified values of the parameters (such as θL) of the Gaussian process, the GASP behaves
as a Kalman Filter, yielding a posterior mean function that can be used as the fast approximation
to yM (·) together with a variance measuring the uncertainty in the approximation. (Details are
given in Appendix C.1.) Note that this variance is zero at the design points at which the function
was actually evaluated. The model approximation obtained through the GASP theory can thus
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roughly be thought of as an interpolator of the data, unless there is numerical instability in the
computer model, as mentioned in footnote 2, in which case the approximation smoothes the data.

Unfortunately, the parameters (such as θL) of the Gaussian process are rarely, if ever, known.
Two possibilities then arise:

a) Plug-in some estimates, for instance maximum likelihood estimates (as in the GASP software
of W. Welch – see also Bayarri et al. (2002)), pretending they are the ‘true’ values.

b) Average over the posterior distribution of the parameters, in a full Bayesian analysis (as
described in Section 5).

The full Bayesian analysis is typically superior, in the sense that the resulting variance of the
model approximation will more accurately reflect reality, since the parameters are unknown. In
terms of the actual model approximation ŷM (x,u), however, use of maximum likelihood estimates
of the parameters typically yield much the same answers as the full Bayesian analysis, and so may
be preferable in computationally intensive situations.

The particular GASP approach that we use has the added bonus that certain types of stochastic
inputs, z, can easily be handled within the same framework; see Appendix C.2 for details.

5 Analysis of Model Output (Step 5)

In this section, we describe the basics of the statistical modeling and analysis that are used for
model evaluation. For illustration in this section we use only SPOT WELD, since CRASH has a
functional data structure that we do not introduce until Section 7.

5.1 Notation and statistical modeling

The model is an approximation to reality. Another way of saying this is that the model is a biased
representation of reality, and accounting for this bias is the central issue for model validation. There
are (at least) three sources for this bias:

1. The science or engineering used to construct the model will typically be incomplete.

2. The numerical implementation may introduce errors (e.g., may not have converged).

3. Any tuned parameters will typically be in error.

Furthermore, the model alone cannot provide evidence of bias. Either expert opinion or field data is
necessary to assess bias – we focus on the latter. If field data are unavailable (even from experiments
involving related models), strict model validation is impossible. Useful things can still be said, but
the ultimate goal of being able to confirm accuracy of prediction will not be attainable.

Recall that we denote by yM (x,u) the model output when (x,u) is input. When u is not
present, as in CRASH, we can statistically model “reality = model + bias” as

yR(x) = yM (x) + b(x) , (5.1)

21



where yR(x) is the value of the ‘real’ process at input x and b(x) is the unknown bias function,
arising from the sources discussed above. When u is present we call its true (but unknown) value
u∗ and then model the bias via

yR(x) = yM (x,u∗) + b(x). (5.2)

Field data at inputs x1,x2, . . . ,xn are obtained, and modeled as

yF (xi) = yR(xi) + εF
i , (5.3)

where the εF
i are independent Normal random errors with mean zero and variance 1/λF . Note that

u is not an input in determining the field data. (We could have included u∗ in the definition of
yR and b, but that would have simply been extra notational burden.) These assumptions may only
be reasonable after suitable transformations of the data and, in any case, more complicated error
structures can be easily accommodated. For example, the εF

i can have a correlated error structure;
indeed, this will be seen to be the case in dealing with CRASH.

The assumption that εF has mean zero is formally the assumption that the field observations
have no bias. If the field observations do have bias, the situation is quite problematic, in that
presumably the field experiments were designed so as to eliminate bias, yet failed to completely do
so. If bias does exist in the field observations, there is no purely data-based way to separate the field
bias from the model bias; expert opinion would typically be needed to make any such separation.
Estimates of bias that arise from our methodology could still be interpreted as the systematic
difference between the computer model and field observations, but this is of little interest, in that
prediction of reality (not possibly biased field data) is the primary goal. Note that it is quite
common for ‘existing field data’ to itself be biased (see, e.g. Roache, 1998), and obtaining unbiased
field data is perhaps the most crucial aspect of model validation. See Trucano et al. (2002) for
extensive discussion.

Assuming computation of yM is fast, Bayesian analysis now proceeds by specifying prior distri-
butions for unknown elements of the model,

– the probability density p(u) for u, which we take to be that specified in the I/U map;

– a prior density p(λF ) for the precision (the inverse of the variance) of the field measurement
error – see Bayarri et al. (2002) for description of the prior we use;

– a prior density for the bias function b(x) (see Appendix D.1),

and utilizing Bayes theorem. (For full details on these priors see Bayarri et al. (2002)). Typically,
however, yM is a slow computer model and we will then need to also incorporate the model approxi-
mation from Section 4 into the Bayesian analysis, so that the model output yM is then viewed as the
Gaussian process discussed therein. (This will be necessary in both the SPOT WELD and CRASH
test beds, since the corresponding computer models are too expensive to run directly within the
Bayesian computation.)
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5.2 Bayesian inferences

Section 5.3 discusses implementation of the Bayesian analysis. Here we focus on discussion of the
possible outputs of the analysis. The basic output from the Bayesian analysis is the posterior
probability distribution of all unknown quantities, given the models and the data (model-runs
and field). The key feature of the Bayesian approach is that this distribution incorporates all
uncertainties in the problem, including uncertainties as specified in the I/U map and measurement
errors in the data. From this probability distribution, a variety of quantities of interest can be
computed and analyses made.

5.2.1 Calibration/tuning

Using field data to bring the model closer to reality, tuning, is often confused with calibration, the
process by which unknown model parameters are estimated from data. The distinction is that,
in calibration, one tries to find the true – but unknown – physical value of a parameter, while
in tuning one simply tries to find the best fitting value. Calibration and tuning parameters are
mathematically the same and are therefore treated identically in the analysis, but conceptually
there is a potentially significant difference. Tuning will tend to give a better model for prediction
with inputs in the range of the field data, but may well give worse predictions outside this range.
For this reason, it is not uncommon for modelers to limit the extent of tuning. This can be done, if
desired, by simply restricting the allowed range of variation in the tuning parameter (or the spread
in the prior distribution of the tuning parameter) in the I/U map.

One often hears that data used for calibration/tuning cannot simultaneously be used for model
validation. However, Bayesian methodology does formally allow such simultaneous use of data.
In part, this is because Bayesian analysis does not simply replace the parameter by some optimal
‘tuned’ parameter value û, but rather utilizes its entire posterior distribution, which reflects the
uncertainty that exists in the value of the parameter.

SPOT WELD: The vector of controllable inputs is x = (C, L, G) and the tuning parameter is u.
(This could also be viewed as a calibration parameter, since it corresponds to an unknown feature
of the contact resistance which is, in essence, being estimated from the field data.) As mentioned
above, the Bayesian analysis produces complete posterior distributions for the unknowns in the
model. For instance, Figure 3 gives the posterior density of u. The optimal tuned value of u is
the mean of this distribution, which is û = 3.96. Note that there is considerable uncertainty in
this value, and the Bayesian analysis will take this uncertainty into account in all assessments of
variance and accuracy. Doing so also helps alleviate the type of over-tuning that can result if one
were to simply pick and use the best-fitting parameter value. In this regard it is also interesting
to note that the two main modes of the posterior correspond to tuning on the gauge=1mm and
2mm data separately; use of either data-set alone would likely have worsened the situation in
regards to over-tuning.
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Figure 3: The posterior distribution of the tuning parameter u.

5.2.2 Predictions and bias estimates

Assume we want to predict the real process yR(x,u∗) at some (new) input x. The preferred
approach is to base this prediction on the output from a new model run at input x (Case 1).
Sometimes this is not feasible (as when it is desired to produce a grid of predictions, as in Figure
4), and then predictions must be based on use of the model approximation (Case 2). We describe
the analysis separately for these two cases.

Case 1. Predictions utilizing a new model run: When using a new model run (a new piece
of data) for predicting the underlying process yR(x,u∗), we have at least two options. First, we
can simply obtain an estimate û and run the model at inputs (x, û) to obtain a prediction; this
will be called model prediction. The second and much preferred approach is to use bias-corrected
prediction, in which the model prediction is corrected by an estimate of the bias. The predictors,
their bias, and their associated variances, are specified below (with full details given in Subsection
5.3).

Model prediction: The most commonly used predictor of yR(x,u∗) is yM(x, û), for some
estimate û of the tuning parameter. (We recommend use of the posterior mean of u, but the
argument applies to any estimate). The accuracy of this estimate is determined by its variance,
Vû(x), which is one of the outputs of the Bayesian analysis.

It is often of separate interest to estimate the bias of the prediction yM (x, û). This is given by

bû(x) = yR(x) − yM (x, û) . (5.4)

The variance of this estimated bias is also available from the Bayesian analysis.

SPOT WELD: For G=2, L=4.888 and C=29.44, and using the posterior mean û = 3.96,

the pure model prediction, resulting from running the computer model at these inputs, is
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ŷM (4.888, 29.44, 2, 3.96) = 7.16. The variance of this prediction is V3.96(4.888, 29.44, 2) = 0.628,

and the estimated bias of the prediction is b̂3.96(4.888, 29.44, 2) = 0.342.

Bias-corrected prediction: An important observation is that one can improve upon the
pure model prediction yM (x, û). Indeed, since an estimate of the bias is available, it is clear that

ŷR(x) = yM (x, û) + b̂û(x) (5.5)

would be the optimal predictor of the actual process value yR(x). Furthermore, the variance of
this improved prediction can be shown to be (Vû(x)− [b̂û(x)]2), which can be significantly smaller
than the variance, Vû(x), of the pure model prediction.

SPOT WELD: For G=2, L=4.888 and C=29.44, and using the posterior mean û = 3.96,

the bias-corrected prediction is ŷR(4.888, 29.44, 2) = 7.16 + 0.342 = 7.50, with a variance of

0.628− 0.3422 = 0.512. Bias-correction here has not resulted in a significantly reduced variance

(compare with 0.628 for the pure model prediction), because the amount of bias was rather

modest at this input value. We will see in Figure 6 that the bias can be significantly greater (as

high as 1.0) at other input values.

There are several important subtleties in the above analysis. The first is that, in principle, a
superior model prediction could be obtained by ‘averaging’ yM (x,u), at the new input x, over
the posterior density of u. This cannot be done, however, if the model is expensive to run. The
recommended analysis in (5.5) achieves a compromise by utilizing the information from the new
model run, yM (x, û), but also averaging yM (x,u) over other values of u through the fast model
approximation. A related point is that the bias defined in (5.4) is different than that defined earlier
in (5.1); this earlier bias was defined relative to the true (but unknown) value u∗, rather than the
estimated value û. The Bayesian analysis properly accounts for this definitional difference in the
analysis.

Case 2. Approximate prediction, based solely on previous model runs: If it is not feasi-
ble to evaluate yM (x, û) at the new input value x (for instance, if prediction is desired at many new
inputs), one can still proceed with prediction of yR(x,u∗), using the model approximation ŷM (x,u).
Indeed, since the model approximation is fast, ‘averaging’ the model approximation ŷM(x,u) over
the posterior density of u, is now feasible, which would lead to bias-corrected prediction. We also
consider pure model prediction, which is here given by ŷM(x, û), and the corresponding estimated
bias function, defined analogously to (5.4).

SPOT WELD: Using solely the previous model runs (and field data), and the model ap-
proximation ŷM , Figure 4 gives the pure model predictions ŷM (L, C, G, û), the estimated bias
functions b̂û(L, C, G), and the bias-corrected predictions ŷM (L, C, G, û) + b̂û(L, C, G), as dis-
cussed above, for the spot weld model. For each gauge, these are presented as surfaces (as a
function of L and C), with the height again being the predicted weld nugget diameter.
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Figure 4: For a Case 2 analysis using only previous model runs, Left figures: the weld diameter
predictions ŷM (L,C,G, û) from the model approximation; Middle figures: the biases b̂û(L,C,G);
Right figures: the bias-corrected predictions ŷM (L,C,G, û)+ b̂û(L,C,G). The circles represent the
field data that were utilized in this analysis.

Note that the information obtained by running the computer model to obtain yM(x, û) can
considerably improve the prediction (and reduce the variance of the prediction), so the Case 1
analysis should be done, when possible. This is particularly true when ‘local’ predictions are being
made, such as predicting the effect of changing from input x to input x′, where x and x′ are close. It
will often then be the case that the pure model prediction of the difference, yM (x, û)−yM (x′, û), is
close to the optimal bias-corrected prediction, ŷR(x′)− ŷR(x), and has much smaller variance than
if the same prediction were made based on the fast model approximation alone. The reason is that
the bias, being smooth, essentially cancels when one computes the difference of model predictions
at close values of the input. The bias would also cancel in the analysis based on the fast model
approximation, but the comparatively significant uncertainty in the fast model approximation (as
an estimate of the actual computer model) will remain. On the other hand, for simply predicting
the process at a new input, the size of the bias correction will often be more significant than the
uncertainty in the fast model approximation.

This helps to explain the often-heard comment by modelers that, even when the overall model
predictions are not particularly accurate, predictions of process changes arising from small changes
in inputs often seem to be quite accurate. It also partly explains why statistical analysis of the
field data alone does not yield as useful predictions as analysis which incorporates the model infor-
mation. For some global predictions, the statistical analysis alone might be nearly as good, but for
exploring fine details of the process under study, the information from the computer model typi-
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cally dominates. This discussion also underscores the fundamental importance of using a method
of analysis that can accommodate, and properly weight, these different types of information.

5.2.3 Tolerance bounds

Predictive accuracy statements, such as “with probability 0.90, the prediction is within a specified
tolerance τ of the true yR(x)” are obtainable from the Bayesian analysis and provide a single simple
measure of the effectiveness of the computer model. These can be obtained both with, or without,
running the model at the (new) input x (Cases 1 and 2, respectively) and correcting or not for
bias. Recall that bias correction results in smaller variances.

Case 1. Obtaining a new model run at input x improves prediction and results in tighter tolerance
bounds.

SPOT WELD: For G=2, L=4.888 and C=29.44, and using the posterior mean û = 3.96, the

pure model prediction was ŷM (4.888, 29.44, 2, 3.96) = 7.16. The 5% and 95% percentiles of the

posterior distribution give the 90% tolerance bounds, which, in this case, are (6.02, 8.30). Sim-

ilarly, the bias-corrected prediction is 7.50, with associated 90% tolerance bounds (6.15, 8.30).

Case 2. If it is not feasible to obtain a new model run, or we have to give tolerance bounds for
many new inputs (as when drawing a graph), then predictions, and tolerance bounds are based
only on the previous model runs (and field data). Note that the resulting tolerance bounds will
typically be wider.

SPOT WELD: Figure 5 provides 90% tolerance bands for two typical cases, one of low load

(L = 4.0) and one of high load (L = 5.3), for each of the two gauges. In particular, the graphs

present the pure model and bias-corrected predictions, and the error bands are 90th percentile

bands for yM (x, û) and ŷR(x). Thus, for the top figures, there is a 90% probability for a specified

current, load, and gauge that the real nugget size lies between the upper and lower dotted lines;

the model approximation ŷM (x, û) at the optimal value of û = 3.96 (see Figure 2) is indicated

by the solid line. Note that the errors for the bias-corrected predictions (see the lower figures)

are considerably smaller.

5.2.4 Uncertainty decomposition

Bayesian analysis not only allows for incorporation of all uncertainties into the accuracy statements,
but also enables decomposition of the uncertainty into its component parts. For instance, in the
overall model we use for SPOT WELD, there are three sources of error: uncertainty in the tuning
parameter u, uncertainty in the bias function b(x), and uncertainty in the residual error εF (which
can arise from random error in the field data and/or randomness inherent in the actual process).
One can separately assess, and report, the variation inherent in each of these sources, which can
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Figure 5: A posterior summary of the error associated with predictions in the Case 2 scenario (i.e.,
when only previous model runs are utilized). As a function of current for low (L = 4.0, left column)
and high (L = 5.3, right column) loads, the top graphs show the model approximation ŷM (x, û)
(solid line) and 90th percentile bands for the pure model predictions. The bottom row of the figure
presents the same for the bias-corrected predictions ŷR(x). The dots indicate the observed field
data.

be important for determination of sensitivities and for improving the model. (Indeed, this aspect
of the analysis can be considered to be a part of ‘sensitivity analysis’, as discussed in Section 10.1.)

Case 1. In this case, prediction is based on both the previous data (model runs and field data)
as well as a new model run at the new input x at which prediction is desired.

SPOT WELD: For G=2, L=4.888 and C=29.44, and using the posterior mean û = 3.96, the

prediction was ŷM (4.888, 29.44, 2, 3.96) = 7.16. The three sources of error in this prediction

and their relative importance can be judged by decomposing the 90% tolerance interval into

intervals corresponding to each estimated quantity. The 90% interval for yM (4.888, 29.44, 2, u)

(with u being considered as the unknown and random quantity) is (6.50, 7.56); the interval

for b(4.888, 29.44, 2) is (−1.00, 1.24); and the additional variability of the interval, induced by

uncertainty in εF , is (−0.71, 0.71).

Case 2. If it is desired to graph the uncertainty due to each of the sources of error, as a function
of the inputs, it will typically be necessary to use the analysis based on only previous model runs.
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SPOT WELD: The uncertainty associated with each of the unknown elements of the problem
(u, b(x), and εF ) is presented in Figure 6. The top graphs present percentiles for yM (x, u),
and indicates the effect of the uncertainty in u. The second and third graphs indicate the
percentiles for b(L, C, G) and for εF , respectively. Interestingly, all three sources of uncertainty
contribute comparable amounts (as measured by the width of the percentile bands) to the overall
uncertainty. Clearly, ignoring any of these sources of uncertainty can lead to overconfidence in
prediction. (Note that the constant lines corresponding to the residual error are a feature of the
model used; it was assumed that the residual error does not depend on x.)
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Figure 6: A posterior summary of the contributions of each source of uncertainty to the overall
uncertainty of predictions under a Case 2 analysis. The top graphs show pointwise 90th percentile
bands for yM (x, u) (with u being considered as the unknown and random quantity) as a function
of current for low (L = 4.0, left column) and high (L = 5.3, right column) loads. The middle row
of graphs shows 90th percentile bands for b(L,C,G). The bottom row shows 90th percentile bands
for εF .

5.3 Outline of the Bayesian methodology

We first consider the case in which the computer model is fast (so yM is treated as a known function,
and no model approximation is needed). We recall the modeling assumptions from Section 5.1:

yF (x) = yR(x) + εF

yR(x) = yM(x,u) + b(x)
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εF ∼ N(0, 1/λF ) .

These produce a multivariate normal density for the collection of all field data, yF , which we
shall denote by f(yF | u, λF , b). (Strictly, we should write u∗ instead of u but, in the Bayesian
approach, all unknowns are considered to be random and so we will drop the * superscript for
notational simplicity.) The prior distribution of the unknown elements u, λF , b of the model will be
denoted by p(u, λF , b) and is described in Appendix D.2. Bayes theorem then yields the posterior
density of these unknowns, given the data yF , as

p(u, λF , b | yF ) ∝ f(yF | u, λF , b)p(u, λF , b). (5.6)

To actually compute the posterior density, one would need to determine the normalizing constant
that makes the expression on the right hand side of (5.6) integrate to one. It will typically be
necessary to deal with this posterior distribution by Markov chain Monte Carlo (MCMC) analysis
(cf. Robert and Casella, 1999), however, and for this the normalizing constant is not needed. The
result of the MCMC analysis will be, say, N draws from this posterior distribution of the unknowns
u, λF and b. Call these samples ui, λ

F
i and bi, i = 1, . . . N . From these samples, the posterior

distribution of any quantities can be estimated. (Thus Figure 3 is just a smoothed histogram
arising from the samples of the ui generated from the SPOT WELD posterior distribution.)

The estimate of the unknown u is now simply û, the average of the ui. (This is the estimated
posterior mean from the MCMC analysis.) Similarly, the estimated bias function is given by

b̂(x) =
1
N

N∑
i=1

bi(x)

To predict the real process, yR(x), at any input x we have two options:

Model prediction: Here the prediction of the real process at input x is simply given by
yM (x, û) . We recommend using the posterior mean as the estimate of u, but analysis can be done
for any estimate, such as the maximum likelihood estimate or any ad-hoc tuned estimate. The
estimated bias of this prediction is given from the MCMC by

b̂û(x) =
1
N

N∑
i=1

[
yM(x,ui) + bi(x)

]
− yM (x, û) . (5.7)

The variance, Vû(x), associated with the model prediction yM (x, û), is computed as

Vû(x) = [b̂û(x)]2 +
1
N

N∑
i=1

[
yM (x,ui) + bi(x) − ŷR(x)

]2
, (5.8)

where ŷR(x) is the bias-corrected prediction, which is computed as in (5.9). Note that it is nec-
essary to use the MCMC computational analysis to obtain the estimated bias and variance of the
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prediction, so that there is no gain in efficiency of computation in using the pure model predictor
yM (x, û).

The posterior probability that yM (x, û) is within a specified tolerance τ of the true yR(x) is
simply estimated by the fraction of the samples (ui, bi) for which |yM (x, û)−[yM (x,ui)+bi(x)]| < τ .

Bias-corrected prediction: It is optimal to use the bias-corrected predictor, given by the
MCMC estimate of the posterior mean of the true process at x, namely

ŷR(x) =
1
N

N∑
i=1

[
yM(x,ui) + bi(x)

]
. (5.9)

An alternative expression for the estimate of the bias, b̂û(x), of the pure model prediction is

b̂û(x) = ŷR(x) − yM(x, û) , (5.10)

thus making obvious its interpretation as the ‘bias’ of the predictor yM(x, û). The bias, b̂û(x), of
the pure model predictor is, in general, different from the prediction of the bias funtion b̂(x). The
variance of the optimal predictor ŷR(x) is simply computed as:

1
N

N∑
i=1

[yM (x,ui) + bi(x) − ŷR(x)]2 = Vû(x) − [b̂û(x)]2 . (5.11)

Note that for large bias, the reduction from the previous Vû(x) can be substantial.
The posterior probability that ŷR(x) is within a specified tolerance τ of the true yR(x) is simply

estimated by the fraction of the samples (ui, bi) for which | ŷR(x) − [yM (x,ui) + bi(x)] | < τ .
The difficulty with the above analysis is that it requires evaluation of yM (x,ui) at each gen-

erated value of ui (and also at each of the data inputs xi), which is infeasible when model runs
are expensive. It is then necessary to use the Gaussian process approximation to yM , described
in Section 5, in order to carry out the computations. This (unavoidably) introduces additional
uncertainty into the predictions. The analysis, however, is very similar to the one just presented;
further details are given in Appendix D.2.

6 Feedback; Feed Forward (Step 6)

The analyses in Step 4 and Step 5 will contribute to the dynamic process of improving the model
and updating the I/U map by identifying

• Model inputs whose uncertainties need to be reduced

• Needs (such as additional analyses and additional data) for closer examination of important
regions or parts of the model

• Flaws that require changes in the model
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• Revisions to the evaluation criteria.

In SPOT WELD, for instance, the posterior distribution of u (Figure 3) will now replace the
uncertainty entry in the I/U map. Another aspect of feedback is use of the Step 4 and Step 5
analyses to further refine the validation process; e.g. to design additional validation experiments.

The feed-forward notion is to develop capability to predict the accuracy of new models that
are related to models that have been studied, but for which no specific field data is available. This
will be done through utilization of hierarchical Bayesian techniques introduced in Section 8. In
CRASH, for example, the scant data for centerpole impacts can be augmented through hierarchical
modeling.

7 Functional Data

Often, data arises in functional form. For instance, in CRASH, the data arises as functions of time
(see Figure 15). In SPOT WELD, the model-run data was given as a function of the number of weld
cycles, but we ended up using only the output at 8 cycles in the analysis (because of data-quality
issues), so functional representation of the data was not needed.

We use t to denote the r-vector of arguments in functional data. In CRASH, t is time, a scalar
quantity (i.e., r = 1). In the remainder of this section, we restrict attention to the scalar case,
although the more general situation can be handled similarly. Also for simplicity of notation, we
assume in this section that there are no u variables (true for CRASH, which will be the test bed
application here).

We can now add t to the list of model inputs, and write the true process value at (x, t) as
yR(x, t), the model output at (x, t) as yM (x, t), etc. As before, reality is linked to model output
by

yR(x, t) = yM (x, t) + b(x, t). (7.1)

In practice we cannot work with complete function data, and it is necessary to discretize the
data. One approach is simply to run separate analyses for each of a small set of t. This is not
recommended, unless it is only a small set of t that are of interest. (For example, in SPOT WELD,
interest primarily focused on evaluation of model predictions at t = 8 cycles.) A second approach
would be to represent the functions that arise through a basis expansion (e.g., a polynomial ex-
pansion), taking only a finite number of terms of the expansion to represent the function. The
coefficients of the terms in this expansion would then be additional input variables in the analysis.
This approach might well be optimal in certain settings, but we turn instead to the most direct
possibility.

The most direct approach is to lump t with x and model yM and b with (single) Gaussian
processes defined on the joint input space. Since we only consider discrete input values here,
we further must pretend that we have only observed the function at a discrete set of points,
DT = {t1, . . . , tT }. In essence, we are thus ‘throwing away available data.’ However, it is clear
that, if T is chosen large enough and the points at which we record the function are chosen well
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(see Section 10.2), then the function values at these T points will very well represent the function.
While this keeps the dimension of the Gaussian processes reasonable (only one new input is added),
the number of observations becomes much larger; at each input value x in the data set, there are
now T function evaluations that must be included as data. The total number of observations
thus becomes (m + l)T , where m, and l are the number of x points in the model and field data,
respectively. Computational complexity grows rapidly with the size of the data set so, at first sight,
this approach is untenable.

Luckily, if we choose the same set, DT , of t points for each of the x inputs in the model-run or
field data, and we make a reasonable simplifying assumption as to the nature of the Gaussian process
correlations involving t, a considerable simplification is effected that reduces the computational
burden to something like the sum of the burdens for (m + l) and T data points. This is discussed
in Appendix E.1.

This analysis now proceeds as in Sections 4 and 5, and produces all the estimates and tolerance
bounds discussed therein. For instance, the GASP approximation, ŷM (x, t), of the computer model,
yM (x, t), can be computed, and pointwise error bands given. Thus, for fixed x, the 80% pointwise
posterior error bands are calculated by choosing L1(t), L2(t) so that 80% of the MCMC samples lie
in IM = [ŷM (x, t) − L1(t), ŷM (x, t) + L2(t)]; the interpretation is then that “the probability is .80
that the computer model output (if run) would lie within the interval IM .”

Inference for a specific evaluation criterion can also be made (see Appendix E.2). In the examples
of this section, the CRITV values arising from use of the GASP model approximation and bias-
corrected prediction will be given.

CRASH: We restrict attention to evaluation when the impact velocity is 56.3 km/h. The
evaluation criterion, CRITV, is “SDM velocity calculated 30ms before SDM displacement, DISP,
reaches 125mm.” We take DT to be the set of 19 time points t = 1, 3, . . . , 15, 17, 20, 25, . . . , 65ms.
More points are chosen in the region t < 20ms since information from this region is more
important in estimating CRITV. More t points could be used at some computational expense
but this selection is adequate because SDM velocity is comparatively smooth and information
at times greater than 65ms is irrelevant for the context at hand.

Since, for any v, the relative velocity is 0 at the time of impact t = 0, and since the slopes are
roughly proportional to v, we assume that the prior mean of yM has the form θLvt. We carry
out a MCMC analysis to approximate the posterior distribution of the parameters (see Bayarri
et al. (2002).) Pointwise posterior intervals are computed. Figure 7 shows 80% pointwise
posterior intervals for yM (56.3, ·) and yR(56.3, ·), corresponding to relative SDM velocity in
the range t < 80ms. The greatest uncertainty in these distributions occurs for t > 65ms, the
region where no data were observed. Note that the error bands about ŷM (56.3, ·) only reflect
the uncertainty in the GASP model approximation to the model, while the error bands about
ŷR(56.3, ·) incorporate all the uncertainty in prediction of reality.

A simple graphical way of judging the validity of the model is to study tolerance bands for
the estimated bias, as given in Figure 8. This shows a small predicted bias (ranging from 0 to
2km/h, with mild uncertainty), slowly increasing as a function of t.

Figure 9 illustrates the uncertainty in the criterion of interest, CRITV . The lower figure
shows the uncertainty of prediction of real CRITV , using the optimal bias-corrected estimate
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Figure 7: 80% posterior intervals of SDM velocity for yM , arising from the GASP model approxi-
mation, and for predicting yR, using bias-corrected prediction (in the Case 2 scenario in which only
previous model runs are used in the analysis).

(Case 2). This would be the result of primary interest to the engineer. The mean and standard
deviation of this posterior distribution of CRITV are -5.21 and 0.33, respectively (so that -5.21
would be the bias-corrected estimate).

To see how much of this uncertainty is due to the use of the GASP model approximation
to the computer model, the upper figure presents the distribution of CRITV that arises from
the uncertainty in the GASP approximation. The mean of -5.11 is similar to that for the real
prediction (suggesting that there is minimal bias), and the standard deviation is 0.13, indicating
that most of the uncertainty in the real CRITV prediction is due to sources other than the
GASP model approximation. (The standard deviation 0.13 in part reflects the fact that only
previous model runs were used - i.e., the model was not re-run at the desired input v = 56.3,
and in part reflects the uncertainty that arises from discretizing t; note that this part of the
uncertainty could be eliminated with more computational effort.)

Since bias is a function of the impact velocity v, the bias should be examined at different
values of v. Figure 10 shows the bias for a 30km/h impact. The bias is clearly larger in the
20-59ms interval than it was for the 56.3km/h impact. The mean and standard deviation of
CRITV are now (−6.53, 0.38) for yM (GASP estimation of the model) and (−6.56, 0.49) for
yR (bias-corrected prediction of real CRITV ). It is interesting to note that the bias seen in
Figure 10 does not have a serious effect on the evaluation criterion (since both the GASP model
approximation and the prediction of reality are very close). This serves as a potent reminder
that validity of a computer model can depend strongly on the evaluation criterion of interest;
while there is a clear indication that the computer model does have bias for SDM velocity at
lower impact velocities and larger times, this bias disappears if only the CRITV criterion is of
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Figure 8: 80% posterior intervals for SDM velocity bias, at 56.3km/h impact velocity.

interest.

8 Extrapolation Past the Range of the Data

One of main motivations for using computer models is the hope that they can adequately predict
reality in regions outside the range of the available data. We have advocated use of bias-correction,
based on field data to improve (typically biased) computer model predictions. The difficulty is that
the estimates of bias may not extrapolate well outside the range of the actual field data. When
this is the case, the Bayesian methodology will tend to return very large tolerance bands; while
one is at least not then making misleading claims of accuracy, the large bands may make assertion
of predictive validity of the model impossible. (On a technical note, the best way to minimize the
size of the tolerance bands in extrapolation is to choose the mean, Ψ(·)θL, of the model Gaussian
process and the mean of the bias Gaussian process to be as accurate representations of the real
process as possible.)

One ‘solution’ to this difficulty is to simply make the scientific judgement that the bias estimates
do extrapolate. For instance, in CRASH, the entire analysis was performed for a fixed vehicle
configuration. If, say, an element of the vehicle frame were increased in thickness by 5%, one might
reasonably judge that the bias estimates would extend to this domain, even though no field data
was obtained for varying thicknesses of the element. Of course, any such assumption should be
reported, along with the conclusions of predictive accuracy of the model.

Bayesian methodology allows a weaker (and typically much more palatable) way of extrapolating
past the range of the data. The idea is to model the new scenario as being related to that (or those)
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Figure 9: Posterior distributions for CRITV.

for which data is available, but not to insist that the situations are identical in terms of bias and
predictive accuracy. There are many variants on this theme; here we consider one that applies to
the CRASH model and is typically called hierarchical modeling.

Hierarchical modeling applies most directly to scenarios in which there are K different function
outputs, each coming from different inputs to a computer model (or even from different computer
models). Each of these functions can be modeled as was done in Section 7, through Gaussian
process priors. We will be particularly concerned with settings where the Gaussian processes for
yM and b can be assumed to share common features, typically where the parameters governing
the priors are drawn from a common distribution. This induces connections among the individual
models and enables us to combine information from the separate models, sharpen analyses and
reduce uncertainties. Clearly, disparate computer models are unlikely to be usefully treated this
way but, for CRASH, such a hierarchical approach will be seen to be useful.

Implementation of these ideas will depend heavily on what data, both computer and field,
are available as well as the legitimacy of the assumptions imposed. Here we informally state and
comment on these assumptions for the simplest structure we will impose. (Full details can be found
in Appendix F.)

Assumption 1. The smoothness of the model approximation processes are identical across the
K models being considered. This is a very reasonable assumption in the contexts for which
hierarchical modeling would typically be employed.

Assumption 2. The variances of the model approximation processes are equal, across the various
cases. Similarly, we assume that the variances, 1/λF , of the field data for all K cases are
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Figure 10: 80% posterior intervals for SDM velocity bias, at 30km/h impact velocity.

equal. Again, this is typically reasonable.

Assumption 3. The relation among the means of the Gaussian processes for the K computer
models is quantified by assuming a common prior distribution for the θL

i as specified in
Appendix F. This prior distribution will allow the θL

i to vary considerably between the K

situations, but still ensures that information is appropriately pooled in their estimation.

Assumption 4. The biases for the K situations are assumed to be related in a fashion described
by a parameter q, whose value must be specified. This parameter describes the believed
degree of similarity in the biases for the K different computer models; indeed, 1 + q can
be interpreted as an upper bound on the believed ratio of the standard deviations of the
biases, or, stated another way, the proportional variation in the bias is q. (See Appendix F
for details.) Specifying q = 0.1 is stating that the biases are expected to vary by about 10%
among the various cases being considered.

Note that specification of q is a judgement as to the comparative accuracy of the K different
computer models, as opposed to their absolute accuracy (which need not be specified). The reason
we require specification of this parameter by the engineer/scientist is that there is typically very
little information about this parameter in the data (unless K is large). Note that specifying q to
be zero could be reasonable, if one is unsure as to the accuracy of the computer models but is quite
sure that the accuracies are the same across the various K.

CRASH: The analysis performed earlier was on data and model for rigid barrier, straight
frontal impact. By use of hierarchical modeling we can simultaneously treat rigid barrier, left
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angle and right angle impacts as well as center pole impact. The analyses and predictions are
made for a 56.3km/h impact (this is at the high end of the data). For illustration, we choose
q = 0.1.

Figure 11 shows the differing posterior predicted SDM velocity curves and pointwise uncer-
tainty bands for each of the four barrier types. The straight frontal and left angle posterior
intervals in Figure 11 are tight because there are data close to 56.3km/h for these barrier types
(so the analysis is effectively like a Case 1 analysis – i.e., based on a new model run at the
desired input – than a Case 2 analysis). In contrast, the intervals are not tight for the other
barriers because data near 56.3km/h are lacking. This thus reinforces the value of making a
model run at a new desired input. Figure 7 and the straight frontal pictures in Figure 11 are
very similar.

Figure 12 gives the estimates of the four bias functions and the associated pointwise uncer-
tainties. Because of the large uncertainties in the bias estimates, the only case in which the bias
seems clearly different from zero is for left angle impacts, after 43ms. (While we cannot clearly
assert that there is bias in the other cases, the tolerance bounds for predictions will be quite
large, reflecting the uncertainty in the bias estimates.)

We again consider the criterion CRITV = SDM velocity 30ms before SDM displacement
is 125mm. Table 4 presents the mean and standard deviations of CRITV for each barrier
type for the GASP model approximation and for the bias-adjusted prediction of CRITV . The
corresponding posterior distributions for CRITV are available, but omitted here.

Hierarchical model Using frontal data only
Barrier type CRITV for yM CRITV for yR CRITV for yM CRITV for yR

left angle -6.08 (0.34) -6.34 (0.49)
straight frontal -5.13 (0.13) -5.22 (0.30) -5.11 (0.13) -5.21 (0.33)

right angle -6.89 (0.65) -6.80 (0.96)
center pole -6.55 (0.74) -6.54 (0.91)

Table 4: Posterior mean and standard deviation of CRITV , arising from the GASP model approx-
imation estimate of yM , and arising as the bias-corrected prediction (ŷR) of real CRITV (in the
Case 2 scenario where only previous model runs are utilized).

Angle as an additional input: If we only consider the three rigid barrier impacts (frontal, right
angle and left angle) and ignore the center pole impact and data, we could proceed without use
of hierarchical modeling by incorporating the angle of impact, xA, as an input to the model. The
smoothness assumption required for the Gaussian process analysis is plausible: it is reasonable
to assume that small changes in the angle will result in small changes in the velocity-time curve
so that yM is a smooth function of xA.

Combining the data from left angle (xA = 0.0), right angle (xA = 1.0), and straight frontal
(xA = 0.5) barrier impacts led to computations that were considerably more expensive than in
the hierarchical model because we now need to invert 26 × 26 matrices instead of the smaller
matrices encountered in dealing with the individual barrier types.

Comparison of the results in Tables 5 and 4 generally shows close agreement between using
angle as input and the hierarchical model. There are differences associated with the right angle
CRITV, reflecting the paucity of data for that angle. (The hierarchical model makes weaker
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Figure 11: Pointwise 80% posterior intervals for 4 barrier types, based on the hierarchical model,
in the Case 2 scenario in which only previous model runs are utilized.

assumptions about the relationship between the various cases than does incorporation of angle
as an input variable, and hence is more affected by the shortage of data for right angle.)

The tolerances in Table 6 refer to relative velocities, but ranges for other evaluation criteria
can be easily computed. For example, the tolerance range for “time at which SDM displacement
is 125 mm” corresponding to the frontal analysis is 15.79 ± 1.03ms.

9 Merging Predictive and Physical Approaches to Validation

9.1 The probability that the computer model is correct

In the introduction, the two philosophies towards validation of a computer model were discussed.
We have focused on the predictive approach, that of determining the accuracy of the predictions
of the computer model, assuming that some bias exists. In the physical school, a modeler that has
carefully constructed and exhaustively tested each component of a model (including component
interfaces) might argue that the model is correct by construction, i.e., that there can be no bias.
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Figure 12: Pointwise 80% posterior intervals for bias, based on the hierarchical model, in the Case
2 scenario where only previous model runs are utilized.

Barrier type CRITV for yM CRITV for yR

left angle -6.04 (0.36) -6.29 (0.53)
straight frontal -5.12 (0.15) -5.24 (0.30)

right angle -6.88 (0.64) -6.69 (0.90)

Table 5: Posterior mean and standard deviation of CRITV , arising from the GASP model approx-
imation estimate of yM , and arising as the bias-corrected prediction (ŷR) of real CRITV (in the
Case 2 scenario where only previous model runs are utilized).

Such claims are rarely believed without at least some confirming data, but how much confirming
data is needed?

This same question arises in the pure view of the scientific process. A scientist proposes a new
theory, which makes precise predictions of a process, say yM (x)±0.0001 at input x. Other scientists
then try to devise an experiment that can test this theory, i.e., an experiment that, for some input
x∗, will provide a field observation yF (x∗) that is within, say, 0.00001 of the true process value
yR(x∗). If the experiment is conducted and yF (x∗) is within ±0.0001 of yM (x∗), then the scientific
theory is viewed as being validated. The key to this scientific process is that, if the scientist makes
even one very precise prediction, and the prediction turns out to be true, then that would seem to
be considerable evidence in favor of the hypothesis. If the prediction of the scientist were not very
precise, then a single observation could disprove, but not really confirm the theory.

The natural language in which to discuss and implement these ideas is the Bayesian language.
The proposed new theory (or proposed computer model) is M0, and one asks the question (after
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Figure 13: 80% pointwise posterior intervals for SDM velocity, using angle as additional input, in
the Case 2 scenario of using only previous model runs.

seeing one or more field observations) “What is the probability, given the data, that M0 is correct?”
This question can be asked – and answered – through the Bayesian approach, and the result behaves
as the scientific intuition from the previous paragraph would suggest. In particular, this probability
can be quite high in the scientific context of a precise theory, after even one confirming precise field
observation, while it will not be high in the case of an imprecise theory (or an imprecise field
observation).

This is a problem of hypothesis testing or model selection. In the classical approach to hypoth-
esis testing, one can essentially show that M0 is false, if the data so suggest, but it is much harder
to show that M0 is true. (There is widespread abuse here; far too often a classical test of M0 is
performed and, if it does not reject, it is concluded that M0 is validated. This is simply bad logic.)
The Bayesian approach does allow direct answer of the primary question of interest.

Several ingredients are needed to implement the Bayesian approach.

1. A prior probability, π0, that M0 is true. This can, of course, vary from one individual to
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Barrier type Hierarchical model Angle input xA Frontal data only
left angle -6.08 ± 0.70 -6.04 ± 0.76

straight frontal -5.13 ± 0.40 -5.12 ± 0.41 -5.11 ± 0.43
right angle -6.89 ± 1.27 -6.88 ± 1.17
center pole -6.55 ± 1.18

Table 6: Posterior mean and 80% tolerance range for CRITV , arising from the GASP model
approximation estimate of yM .

another. The modeler might feel π0 to be quite high, while a skeptic might judge it to be
low. Often, however, the default choice π0 = 1/2 is made, in order to ‘see what the data has
to say.’

2. An alternative model M1.

3. Suitable prior probability distributions on unknown parameters of M0 and M1.

In the context of evaluation of computer models, we have already constructed these needed ingre-
dients. In particular,

• The prior distribution on the parameters of the computer model, M0, is that provided by
the I/U map.

• The alternative model, M1, is the model we constructed in Sections 5.1 and 7 , which includes
the bias term b(x). Full details can be found in Bayarri et al. (2002).

• The prior distribution on the parameters of the alternative model (including the unknown
bias) are as constructed for the predictive validation.

The result of the analysis is called the posterior probability that M0 is true, and will be denoted
by P (M0 | y), where here we generically let y refer to all the data.

CRASH: Analysis in this test-bed resulted in a posterior probability of near 0 that the computer

model is true (assuming an initial prior probability of π0 = 1/2. This was actually also apparent

from earlier graphs of the estimated bias, and illustrates an important point: if a computer model

has statistically significant bias over any part of the domain under study, the model will have

essentially zero posterior probability of being correct. This, of course, is as it should be, but

does point out the reason that looking at predictive accuracy of the model (which can vary over

the input domain) is greatly superior to simply asking yes/no questions.

Before discussing the details of the analysis, another feature of the Bayesian approach deserves
highlighting, namely that the conclusions regarding accuracy of predictions will now be a weighted
average of the accuracy statements arising from M0 and M1. For instance, if it is desired to know
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the probability that yR(x∗), at specified input x∗, lies within the interval (8, 10), the answer would
be

P (M0 | y)P (8 < yR(x∗) < 10 | M0) + (1 − P (M0 | y))P (8 < yR(x∗) < 10 | M1) ,

with the P (8 < yR(x∗) < 10 | Mi) being computable from our previous analyses. In this expression,
we see a complete merging of the physical and predictive approaches to model validation. The
physical approach would produce the accuracy statement P (8 < yR(x∗) < 10 | M0), while the
predictive approach would produce the accuracy statement P (8 < yR(x∗) < 10 | M1). The overall
correct answer is their weighted average, with the weights being the posterior probability that each
of the models is true.

9.2 Implementation

In carrying out the Bayesian computation of P (M0 | y) for a slow computer model, the approxi-
mation introduced in Section 4 will be required. In this case, M0 is like the overall model M1, but
with the bias function b(·) = 0.

Let φi be the full parameter vector for model Mi, i = 0, 1 (including all parameters of the mean
functions and the Gaussian processes involved). In addition, for model Mi, i = 0, 1, denote by fi(y |
φi), pi(φi) and pi(φi | y) the likelihood function of the full data vector y (both computer model and
field data), the prior density and the posterior density for the parameter vector, respectively. The
form of the likelihood function and the approaches for prior specification and posterior inference,
using MCMC methods, for model M0 are similar to the corresponding ones for model M1, described
earlier and detailed in Bayarri et al. (2002).

Letting π1 = 1−π0 denote the prior probability of M1, Bayes theorem gives that the posterior
probability of M0 is given by

P (M0 | y) =
π0m0(y)

π0m0(y) + π1m1(y)
, (9.1)

where
mi(y) =

∫
fi(y | φi)pi(φi)dφi (9.2)

is the marginal likelihood for model Mi, i = 0, 1.
Although we are typically able to integrate over a part of the parameter vector φi, analytic

expressions for the integrals in (9.2) are not available. However, numerical evaluation, based on
Monte Carlo estimates, is feasible using the posterior samples from pi(φi | y), i = 0, 1, and the
existing approaches to this problem (see, e.g., Chib and Jeliazkov, 2001, and references therein).

Note that use of improper priors is typically not possible when interest lies in computation of
marginal likelihoods of models. However, given specific structure of the models, improper priors for
some of the parameters can be employed. (See Berger, De Oliveira and Sansó, 2001, for discussion
of this issue and additional references.) In our setting, it is, in general, possible to use the improper
prior, given in Bayarri et al. (2002), for θL, the vector of parameters associated with the mean
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function of yM(·).

9.3 Merging numerical and statistical modeling

When there is a significant amount of field data available, a statistician might consider simply
modeling the field data by statistical methods, forgoing utilization of the computer model of the
process. It is natural to ask if such pure statistical modeling can be merged with the computer
model to produce improved predictions. The answer is yes, and involves incorporation of the
statistical modeling into both the mean function of the bias and error structure of the data. We
do not consider this further here, as the focus of the paper is on validation of the computer model.

10 Additional Issues

10.1 Computer model simplification

Sensitivity analysis

Sensitivity analyses focus on ascertaining which inputs most strongly affect outputs, a key tool in
refining the I/U map. There are ‘local’ and ‘global’ approaches to sensitivity analysis. The local
approach is based on derivatives of model outputs with respect to model inputs. This can some-
times be done by automatic differentiation (actual line-by-line differentiation within the computer
code), but is almost always a difficult process. The global approach is based on statistical analysis
comparing the output and input distributions. There are many versions of such global analyses, but
the most commonly used are variants of ‘analysis of variance’ (ANOVA) decomposition, to assess
which input variables have the greatest effect on the variance of the output distributions. Models
based on the most important variables can then be studied, with the less important variables fixed
(at, say, their prior means). Methods of model simplification based on principal component analysis
(or POD in the applied mathematics literature) also fall in this domain. (See Saltelli et al., 2000,
for discussion and examples of output and sensitivity analyses.)

Again, model approximations are needed for expensive codes and these, in turn, require special
methods of global sensitivity analysis. Elaboration of these methods will not be treated here,
although there is code by W. Welch which provides an ANOVA decomposition for the model
approximation mentioned in Step 4 based on maximum likelihood estimation of the parameters.

10.2 Utilization of transformations

• Often a transformation of the data is helpful in the statistical modeling. For instance, in
CRASH, it was helpful to consider relative velocity (subtracting the initial impact velocity
from all data) instead of raw velocity.

• One can perform a change in time scale to deal with nonstationarity in time. For instance,
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define a new time scale by taking a functional output yM (x0, t), at a typical x0, and defining

t∗ =
∫ t

0

∣∣∣∣ ∂

∂v
yM (x0, v)

∣∣∣∣ dv.

A similar rescaling could be done for any continuous variable, if desired.

• Transformations of the Gaussian process y(z) can be made, such as y∗(z) = g(z)y(z). This is
a new Gaussian process with mean multiplied by g(·) and a covariance function that is often
of suitable form.

CRASH: The process is ‘tied down’ at time 0, and a smaller variance is expected there.

Choosing, say, g(t) = t/(10 + t) will result in a Gaussian process with near zero variance

initially, yet a process that behaves essentially like the previous stationary process once one

is significantly far from 0.

10.3 Modularization

The basic idea is to first do the Bayesian analysis of all the model data, ignoring the contribution
of the field data in estimating GASP model approximation parameters (including the θL and those
relating to the functional parameters t). Then, treating the model parameters (other than tuning
parameters) as specified by the resulting posterior distribution (or, possibly, by their maximum like-
lihood estimates), one incorporates the field data by a separate Bayesian analysis. The motivation
and advantages of the modular approach are as follows.

1. This is a Bayesian version of ‘partial likelihoods’: if f(data|θ, ν) = f(data|θ)g(data|ν, θ),
partial likelihood uses only f to estimate θ which then gets plugged into g for further inference
about ν.

2. Field data can affect the GASP model approximation parameters in undesirable ways, result-
ing in pushing u to ‘bad’ regions of its space. The modular approach can prevent this from
happening.

3. This easily generalizes to systems with several model components, Mi, each of which has
separate model-run data. Dealing first with the separate model-run data, in setting up the
GASP model approximations, and incorporating the field data only at the tuning/validation
stage, makes for an easier-to-understand and computationally more efficient process.

Details concerning the modular approach can be found in Bayarri et al. (2002).

10.4 Multivariate output functions

There are a variety of possible ways to extend the analysis to multivariate output, important for
situations such as the following, but we do not consider them here.
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CRASH: The evaluation criterion “velocity at the center of the radiator, RDC, 30ms before

SDM displacement reaches 125mm” involves a combination of two sensors, one located at the

radiator center and the other under the driver’s seat. This evaluation criterion thus requires an

analysis of bivariate model output.

10.5 Updating

The model approximation is exact only at the observed model-run data points. Sometimes the
values of the model output are also constrained at other points, and it can be important to include
such constraints in the analysis. This is best done ‘after the fact’ by conditioning the unconstrained
answer on the known constraints. (Trying to incorporate the constraints at the beginning often
fatally disrupts the computations.)

CRASH: A problem arises if we wish to predict the velocity-time curve when the initial velocity

v0 is between two data curves: at time t = 0 we know that the relative velocity is 0, but the

Gaussian process approximation only assumes that this is true in mean. If one tried to add

the constraint that all initial relative velocities were zero, the Kronecker product computational

simplification no longer applies, resulting in an impractical MCMC algorithm. A compromise is

to introduce the information that the relative velocity is initially 0 only at the prediction stage,

which is straightforward to do.

Another crucial instance of the conditioning idea is when an additional model data point,
yM (x, û), becomes available. Indeed, this is how the actual model can be utilized in future pre-
dictions, according to the recommended ‘Case 1’ approach to validation. The difficulty is that
one can then rarely go back and re-run the entire MCMC computation with this new data point.
The solution is simply to condition the existing posterior on this additional data point, using it
in the Kalman filter part of the analysis, but not to obtain the posterior for tuning parameters or
parameters in the Gaussian processes. Details can be found in Bayarri et al. (2002).

10.6 Accounting for numerical instability and stochastic inputs

Sometimes numerical instability in the computer model can be modeled by adding an additional
random noise term to the GASP model approximation (often called a ‘nugget’ in the Gaussian pro-
cess literature). Likewise, stochastic inputs can often be handled by simply enriching the stochastic
structure of the GASP model approximation. We do not consider these generalizations here.
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A Resistance Spot Weld Process Model

A.1 Introduction

In resistance spot welding, two metal sheets are compressed by water-cooled copper electrodes, un-
der an applied load, L. Figure 14 is a simplified representation of the spot weld process, illustrating
some of the essential features for producing a weld. A direct current of magnitude C is supplied
to the sheets via the two electrodes to create concentrated and localized heating at the interface
where the two sheets have been pressed together by the applied load (the so-called faying surface).

Figure 14: Resistance spot welding process

A.2 The welding process

The welding process is comprised of six steps:

1. A load, L, is first applied to the electrodes producing an elastic and plastic deformation of the
sheets. The resulting deformation brings into contact different areas at the electrode- sheet
and faying surface, the size of which depends on the magnitude of the applied load, the yield

stress, σS, of the sheet metal and Young’s modulus, E, of the sheet and electrodes.

2. After the compression step, imposing a voltage drop across the electrodes generates a current
of magnitude C. The current passes through the electrodes, sheets and faying surface. Both
the electrodes and the sheets have well-defined temperature-dependent values of electrical
and thermal conductivity, σ and κ, respectively.
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3. Because of the current flow, heat will be generated and temperatures in the system will start
to increase at a rate that depends on the local value of the resistance. The resistance offered
at the faying surface is particularly critical in determining the magnitude of heat generated.
If the applied load is too high, the two sheets will be pressed tightly together at the faying
surface, producing little resistance and low generation of internal heat. This inhibits melting
and nugget formation and growth. If the load is too low, then the air gap between the two
sheets at the faying surface will be high producing a high resistance, high heating and possible
uncontrolled nugget growth (expulsion and electrode degradation).

4. The physical properties of the materials will change locally as a consequence of the local
increase in temperature. Young’s modulus and the yield stress of the sheet will fall (that is,
the metal will “soften”) resulting in more deformation and increase in the size of the faying
contact surface. At the same time, the electrical and thermal conductivities will decrease
as the temperature rises; all of which will affect the rate of heat generation and removal by
conduction away from the faying surface.

5. If the applied current is high enough, sufficient heat will be generated to result in melting, first
at the faying surface and then in an increasing volume of material about the faying surface.
If the melt zone becomes too large, weld metal expulsion will occur.

6. When the current is turned off and the melt zone allowed to cool and quench, a nugget is
formed and a spot weld results.

The thermal/electrical/mechanical physics of the spot weld process outlined above is modeled
by a coupling of the continuum partial differential equations (PDE’s) that govern heat and electrical
conduction with those that govern temperature-dependent, elastic/plastic mechanical deformation
(Wang and Hayden, 1999).

A.3 The computer models

Finite element implementations are used to provide a computerized model of the electro-thermal
conceptual model. Similarly, a finite element implementation is made for the equilibrium and
constitutive equations that comprise the conceptual model of mechanical/thermal deformation.
These two computer models are implemented using two distinct modules of a commercial code
(ANSYS).

Although the commercial finite element modules are distinct, they are coupled because the
mechanical deformation affects the electro-thermal conduction process through its effect on the
areas of the contacting surfaces. This is simulated in the computer model by passing the calculated
temperature field to the deformation module, called as an external procedure, at intervals of a
quarter of a cycle (1/240 seconds of simulated time). The updated contact areas are then passed
back to the electro-thermal module from the deformation module.
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B Modeling for Vehicle Crashworthiness

Modeling the effects of a collision of a vehicle with a barrier is routinely done by implementing a
dynamic analysis code using a finite element representation of a vehicle. A finite element model
includes the following components: complete body “in white” including windshield, cradle, bumper
system, doors, engine/transmission, suspension, exhaust system, rear axle, drive shaft, radiator,
steering system, instrument panel beam, and brake booster. Additional mass is often used to
represent nonstructural components and inessential objects, while maintaining the actual vehicle
test weight and its center of gravity. The element size is generally between 10 mm to 15 mm. Holes
smaller than 15 mm diameter are not modeled unless located in critical areas; fillets, rounds, and
radii less than 10 mm are ignored.

A finite element vehicle model consists mostly of shell and solid elements. Shell elements are
used to model the rail, frame, and stamped/deep-drawn sheet panels; solid elements are used to
model the bumper foam, radiator, battery, and the suspension system. An engine is usually modeled
with shell elements on the exterior surface with properly assigned mass and moments of inertia to
represent the massive engine block. Since the crash behavior of the vehicle is the primary concern,
there is greater detail in the crush zone structure/components and the connections between them,
to create greater accuracy. The number of elements range in size from 50,000 to 300,000. The
duration of the simulations is between 100 and 150 milliseconds (msec) for most frontal impact
conditions.

The computer model is run using a non-linear dynamic analysis (commercial) code, LS-DYNA.
Computational turn around time can be great - from 1 to 5 days on a standard work station.

There are many variables and sources of uncertainty in the vehicle manufacturing process and
proving ground test procedures that, in turn, induce uncertainties in the test results. The accel-
eration and velocity histories of two production vehicles of the same type, subjected to 30mph
zero degree rigid barrier frontal impact tests, as shown in Figure 15 demonstrate the differences
in “replicate” crashes. There are a variety of materials used in components of the vehicle and,
consequently, a variety of material properties to deal with, not all of which may be satisfactorily
specified.

An Input/Uncertainty map for the crash model is given in Table 7.

C Technical details for Section 4

C.1 The GASP response-surface methodology

Recall that yM = (yM (x1,u1), . . . , yM (xm,um)) denotes the vector of m evaluations of the model
at the inputs DM = {(xi,ui) : i = 1, . . . ,m} and we write z = (x,u). The computer model is
exercised only at the inputs DM , so that yM(z) = yM(x,u) is effectively unknown for other inputs
z = (x,u). Thus, in the Bayesian framework, we assign yM(z) a prior distribution, specifically a
stationary Gaussian process with mean and covariance functions governed by parameters θL and
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Figure 15: Acceleration and velocity pulses in the occupant compartment from 30mph zero degree
rigid barrier frontal impact tests for two production vehicles of the same type.

θM = (λM ,αM ,βM ), respectively. The mean function of the Gaussian process was discussed in
Section 4, and so we turn to discussion of the covariance function.

The parameter λM is the precision (that is, the inverse of the variance) of the Gaussian process
and the other parameters (αM ,βM ) control the correlation function of the Gaussian process, which
we assume to be of the form

cM (z,z∗) = exp


−

d∑
j=1

βM
j |zj − zj

∗|αM
j


 . (C-1)

Here, d is the number of coordinates in z, the αM
j are numbers between 0 and 2, and the βM

j

are positive scale parameters. The product form of the correlation function (each factor is itself
a correlation function in one-dimension) helps the computations made later. Prior beliefs about
the smoothness properties of the function will affect the choice of αM . The choice αM

j = 2 for
all j reflects the belief that the function is infinitely differentiable, which is plausible for many
engineering and scientific models.

This can be summarized by saying that, given the hyper-parameters θL and θM = (λM ,αM ,βM ),
the prior distribution of yM is GP (Ψ(·)θL, 1

λM cM (·, ·) ), i.e., a Gaussian process with the given
mean and covariance function.

As before, let yM denote the vector of model evaluations, at the set of inputs DM . Then,
before observing the yM ’s, and conditionally on the hyperpartameters, yM has a multivariate
normal distribution with covariance matrix ΓM = CM (DM ,DM )/λM , where CM (DM ,DM ) is the
matrix with (i, j) entry cM (zi,zj), for zi,zj in DM . Once yM is observed, it is a likelihood function
for the parameters θL and θM (based solely on the observed yM ).

If z is a new input value, then the conditional distribution of yM (z), given yM , θL and θM

is normal. Formally, the posterior density, p(yM (·)|yM ,θL,θM ), is a Gaussian process with mean
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INPUT IMP UNCERTAINTY CURRENT
ACT STATUS

Geometry Element size about 10mm 5 unspecified fixed
Holes < 10mm, fillets, and 4 unspecified fixed

rounds not meshed
Use of design surfaces, not 4 unspecified fixed

surfaces after stamping
Spot weld locations are 5 unspecified fixed

approximated
Thickness variation from 3 Can be specified with c.v. of Controllable in

location to location 2% for whole components some degree
Material Dynamic stress/strain curves 3 May be approximated with c.v. Controllable in

Properties of 5% for major components some degree
Spot weld failure force 3 unspecified fixed

Joints separation 2 Approximated with 5% c.v. Controllable
Damping factor 5 Controllable fixed

Friction coefficients 4 unspecified fixed
between part

Material density 5 unspecified fixed
Boundary/ Vehicle mass/speed 5 Can be matched with the test fixed

Initial Barrier variation (plywood 3 unspecified fixed
Conditions condition and barrier angle)

Vehicle test attitude 5 unspecified fixed
Testing environment (humidity 5 unspecified fixed

& temperature)
Restraint Steering column stroking force 2 5% of c.v. controllable
System Airbag deployment time 4 5% of c.v. controllable

Seatbelt retractor force 2 5% of c.v. controllable
Airbag mass flow rate 2 5% of c.v. controllable

Occupant position 3 ± 1
2 inch on horizontal plan controllable
and ± 1

4 inch on vertical

Table 7: The input uncertainty map for a math vehicle.

and covariance function given by

E[ yM (z)|yM ,θL,θM ] = Ψ(z)θL + rz
′(ΓM )−1(yM −XθL) (C-2)

Cov[ yM (z), yM (z∗)|yM ,θL,θM ] =
1

λM
cM (z,z∗) − rz

′(ΓM )−1rz∗ , (C-3)

where rz
′ = 1

λM (cM (z,z1), . . . , cM (z,zm)), ΓM is given above, 1 = (1, . . . , 1) and X is the matrix
with rows Ψ(z1), . . . ,Ψ(zm).

With specifications for θL and θM , the mean function, (C-2), can be used as an inexpensive
emulator for yM(·). Indeed, the response surface approximation to yM(x,u), given θL and θM is
simply E[ yM (x, u)|yM ,θL,θM ] and the variance of this approximation is cM ((x,u), (x,u))/λM −
r′(x,u)(Γ

M )−1r(x,u). Note that this variance is zero at the design points at which the function was
actually evaluated.

However, the hyper-parameters θM ,θL are rarely, if ever, known. Two possibilities then arise:
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a) Plug-in some estimates in the above formulae, for instance maximum likelihood estimates (as
in the GASP software of W. Welch – see also Bayarri et al. (2002)), pretending they are the
‘true’ values. For MLE estimates θ̂

M
, θ̂

L
this produces the following model approximation

for inputs (x,u)

ŷMLE(x,u) = Ψ(x,u) θ̂
L

+ r̂′(x,u)(Γ̂
M

)−1(yM −Xθ̂L
) ,

where θ̂
M

= (λ̂M , α̂M , β̂
M

) is used to compute Γ̂
M

and r̂(x,u). Similarly, θ̂
M

and θ̂
L

are

often ‘plug-in’ in Cov[ yM (x,u), yM (x,u)|yM , θ̂
L
, θ̂

M
] (see equation (C-3)) when computing

an estimate of ‘error’. Notice that this can result in an underestimation of the true variability,
since the uncertainty in the estimates θ̂

M
and θ̂

L
is not taken into account.

b) Integrating the parameters with respect to the posterior distribution in a full Bayesian analy-
sis (as described in Section 5 and in Bayarri et al., 2002) leads to a more appropriate emulator
(model approximation), namely the integral of E[ yM (x, u)|yM ,θL,θM ] with respect to the
posterior distribution of θM ,θL. Likewise, the variance of the emulator is obtained by aver-
aging cM ((x,u), (x,u))/λM − r′(x,u)(Γ

M )−1r(x,u) over the posterior distribution of θM ,θL.
This, in practice (see Bayarri et al. (2002)) amounts to generating N (large) values (θL

i ,θM
i )

from its posterior distribution, and then simply evaluate the previous quantities at these gen-
erated values and take the average. Hence the proposed Bayesian model approximation to
yM (·) is

ŷM (x,u) =
1
N

N∑
i=1

[
Ψ(z)θL

i + ri
′
(x,u)(Γ

M
i )−1(yM −XθL

i )
]

,

where ri
′
(x,u) and ΓM

i are computed using the generated values θM
i for the parameter (i =

1, . . . , N). Likewise, the proposed variance function is

V M (x,u) =
1
N

N∑
i=1

[
1

λM
i

cM
i ((x,u), (x,u)) − ri

′
(x,u)(Γ

M
i )−1ri

′
(x,u)

]
,

where again the generated values of θM
i are used to evaluate the functions cM

i .

Note that, while the proposed (Bayesian) model approximation ŷM (x,u) will often be similar
to its MLE counterpart, ŷMLE(x,u), the proposed variance function, V M (x,u), will typically be
larger than the corresponding plug-in variance function, because it appropriately takes into account
uncertainty in the parameters.

The procedure for obtaining a sample from the posterior distribution of yM , for computing the
posterior mean and variance above can be summarized as follows.

1. Start with (i) the likelihood function of the model-run data, which from Bayarri et al. (2002)
is proportional to a multivariate normal MV N(XθL,ΓM ) distribution; (ii) prior distributions
for (θL,θM ), as given in Bayarri et al. (2002).

53



2. The posterior distribution of (θL,θM ) is then approximated by an MCMC analysis that is a
simplified version of that described in Bayarri et al. (2002).

3. The posterior distribution of yM (znew) is then obtained by first sampling the posterior distri-
bution of (θL,θM ), then sampling the multivariate normal with mean and covariance given by
(C-2) and (C-3) with the sampled hyper-parameters. This is repeated many times to produce
the required sample from the posterior distribution of yM .

This emulator can roughly be thought of as an interpolator of the data, unless there is numerical
instability in the computer model, as mentioned in footnote 2, in which case the emulator smoothes
the data.

C.2 Processing stochastic inputs with GASP

One of the attractions of the particular form of the covariance function that we use for GASP is
that it can greatly simplify the handling of certain types of stochastic inputs. Writing

a = (a1, . . . , am)′ =
1

λM
(ΓM )−1(yM −XθL) ,

expressions (C-2) and (C-1) yield

E[ yM (z)|yM ,θL,θM ] = Ψ(z)θL +
m∑

i=1

ai cM (z,zi)

= Ψ(z)θL +
m∑

i=1

ai

d∏
j=1

exp{−βM
j |zj − zij |α

M
j }. (C-4)

Suppose now that inputs zb, . . . , zd are stochastic, with (for simplicity) independent densities pj(zj).
Then taking the expectation of (C-4) over these random inputs yields

E[E[ yM (z)|yM ,θL,θM ]] = E[Ψ(z)]θL +
m∑

i=1

ai

b−1∏
j=1

e−βM
j |zj−zij |α

M
j

d∏
j=b

∫
e−βM

j |zj−zij |α
M
j

pj(zj) dzj .

(C-5)
Assuming the underlying basis functions Ψ(z) are chosen so that their expectation with respect to
the pj(zj) is easily computable (trivial, for instance, if the mean function is linear), (C-5) shows
that the expectation reduces to computation of a collection of one-dimensional integrals.

This can be an enormous computational simplification, especially when, say, optimization over
the nonrandom inputs z1, . . . , zb−1 is desired. The one-dimensional integrals in (C-5) can be carried
out in a pre-processing step, and the optimization then easily implemented.

Even greater simplifications are possible if the αM
j equal 1 or 2 and the pj(zj) are normal

or exponential densities; the one-dimensional integrals can then be carried out in closed form.
Furthermore, if the αM

j = 2 (a possible choice if, for instance, the computer model is expected to
be very smooth), then even a multivariate normal density for zb, . . . , zd will lead to closed from
integrals.
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D Technical details for Section 5

D.1 Prior distribution for the bias function

The prior density of the bias is taken to be another Gaussian process with correlation function as
in (C-1), but with its own set of hyper-parameters. However, we restrict attention to smooth bias
functions by fixing all components of the vector αb to be two. In part, this is done for technical
reasons; since the bias cannot be observed directly, there is very little information available about
αb, and numerical computations are more stable with αb specified. There is also the notion that the
bias process might typically be smoother than the model process; for instance, the model process
might only be ‘off’ by a level-shift, because of something forgotten or inappropriately specified
in the model. Indeed, there is both empirical and ‘folklore’ evidence of this. Empirically, in the
examples we have looked at, the maximum likelihood estimates of αb have mostly been near 2. As
to folklore, it is often claimed that even biased models are typically accurate for predicting small
changes, which would not be true if bias were not smoother than the model outputs. Finally, note
that the bias can still assume the form of any infinitely differentiable function.

The mean function of the Gaussian process used to model the bias is typically chosen to be
either zero or an unknown constant. (In the test beds, we used a zero mean for SPOT WELD and
allowed a non-zero mean for CRASH.) More complicated linear structures, such as Ψ(z)θL, are
possible, but we have not yet ascertained the extent to which they are helpful.

D.2 Analysis with model approximation

An outline of the Bayesian analysis when the model yM is inexpensive to run was given in Section
5.3. Typically, however, models runs are very expensive. The actual analysis, in this case, is similar
to that described in Section 5.3, except that now yM is also viewed as unknown, with the Gaussian
process prior. Indeed, we recommend that one directly use p(yM |yM ,θM ) from Appendix C.1 as
the posterior distribution of yM . Then the only modification needed in the analysis in Section 5.3 is
to draw yM (x,ui) directly from this posterior (i.e., draw (θL,θM ) from its posterior, based on the
model data, and then compute yM (x,ui) from the GASP posterior using these parameter values)
whenever it is needed to compute the likelihood f(yF |u, λF , b).

If one is going to predict the process at some new input vector x, one can

Case 1. Compute yM (x, û), (preferable, if possible). It is then important to update the posterior
distribution p(yM |yM ,θM ) by including the data point yM (x, û) in the data yM , but keeping
the other aspects of the posterior distribution unchanged. This can be done by an updating
formula that is given in Bayarri et al. (2002).

Case 2. Use the prediction arising directly from the above posterior, avoiding computation of
yM (x, û).

The above analysis is really only an approximate Bayesian analysis, in two respects. First, the
recommendation to include the data point yM(x, û) in the data yM , but keep the other aspects
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of the posterior distribution unchanged, is not the full Bayesian analysis; but a full analysis would
require rerunning the entire MCMC with this data point added, which will rarely be feasible. The
second approximate aspect of the analysis is that the formal posterior distribution of all unknowns
is actually

p(yM ,u, λF , b,θ|yF ,yM ) ∝ f(yF |yM ,u, λF , b)p(yM |yM ,θM )f(yM |u,θM )p(u, λF , b)p(θM ) ,

where p(θM ) is the prior density of θM and we now recognize that yM is also unknown in the
likelihood arising from yF . The posterior distribution p(yM |yM ,θM ) is readily available from the
GASP theory. The main reasons not to utilize this posterior is that it significantly increases the
difficulty of performing the needed updating when yM (x, û) is computed.

E Technical details for Section 7

E.1 Kronecker product

Since we assume that the functions are discretized at the same points in DF
t for all x in the data,

the overall design spaces (the sets of (x, t) points at which model-run and field data are obtained)
can be written as the products DF

x × DF
t and DM

x × DM
t . The product form of the correlation

functions for the model approximation and bias processes then induces a simple algebraic structure.
Specifically, the correlation matrices induced by the correlation functions (the (i, j)th entries of the
matrices are the c’s evaluated at the i and j data points) have a form that can be manipulated to
simplify computation. The basic idea lies in recognizing that the matrices have the so-termed form
of a Kronecker product defined as: A ⊗B of matrices Am×n,Bp×q is the mp × nq matrix whose
i, j block is aijB.

Indeed, if we denote the correlation matrices by C (there will be appropriate superscripts
corresponding to the particular correlation functions generating the matrices), then each element
of C is a product of an “x” term and a “t” term . Since the computer model design is of the form
DM × DT , we can write CM,T as a Kronecker product:

CM,T = CM ⊗CT , (E-1)

where CM and CT are correlation matrices corresponding to the x and t components of the
correlation functions. The same can be done with Cb,T and CF,T . We could have different CT for
M, b and F in (E-1) but we take these CT to be the same in each case for simplicity and to make
computations feasible. The assumption that CT is the same for M, b and F is not unreasonable -
any choice of CT results in the posterior means of yM and yF to be interpolators as functions of t

for fixed x, and we can always select enough t points to ensure enough accuracy in the predictions
along t.

The advantage of the Kronecker product structure lies in resulting simplifications for calculating
inverses of the correlation matrices. This is crucial because these inverses must be calculated many
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times in the MCMC process that produces the posterior distributions of the model parameters.
Specifically, the inverse of, say, CM is the Kronecker product of the component inverses (Searle,
1982):

(CM,T )−1 = (CM )−1 ⊗ (CT )−1. (E-2)

Because the component matrices are m×m and T ×T while CM,T is m T ×m T the computational
savings in computing the inverse are obvious.

CRASH: Using data only for the straight frontal barrier there are 9 different impact velocities

and if we use 19 time points we get a total of 171 data points. The correlation matrix, CM ,

corresponding to the computer runs, is then a 171 × 171 matrix but is a Kronecker product of

9 × 9 and 19 × 19 matrices.

E.2 Analysis of function output

We have two sets of data: computer model data and field data. The measurement error term in
the model for the field data must incorporate “time” dependence of the field observations. We give
here only an sketch of the approach followed. Full details can be found in Bayarri et al. (2002). Let
ȳF denote the sufficient statistic for field data Given the hyper-parameters of the Gaussian process
priors the distribution of the complete data vector y = (yM , ȳF ) is

p(y | θL,βM , λM ,βb, λb, λF , βε
t , α

ε
t,α

M ,αb) = N






ψ(z1)

...
ψ(zn)


 θL,Σ ⊗CT


 , (E-3)

where zi is the (x, t) input associated with yi, and Σ is a covariance matrix whose specific form is
given in Bayarri et al. (2002).

The MCMC analysis (see Bayarri et al., 2002 for full details) can be carried out for function
output. The necessary inversions of Σ ⊗ CT are simplified because of the Kronecker product
structure and (E-2). The posterior distribution of yM (x, t), for each selected point in DP =
DP

x ×DP
t (DP

x contains the x points at which we want function realizations; DP
t is dense enough to

get a good image of the function yM(x, ·) and is not the same as DT ), can be obtained (simulated).
This produces a prediction ŷM(x, t) of yM (x, t) and accounts for uncertainties in the unknown
parameters. By doing so for each t we get a prediction of yM (x, ·) with pointwise uncertainties.

Inference for a specific evaluation criterion proceeds as follows. For each realization of the
parameters the output function is simulated (at least at a reasonably dense set of t— see Bayarri
et al., 2002). Then the evaluation criterion is calculated. Repeating this yields a sample from its
posterior distribution. This procedure can be applied to simulations from the posterior distribution
of the model yM and from the posterior distribution of reality yR.
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F Technical details for Section 8

Suppose we have K related models. We assume that the models are related as follows (see Bayarri
et al., 2000, for discussion):

1. All models and field data have common α’s, common β’s, common λM ’s and common λF .
The choice of priors for these is explained in Bayarri et al. (2002).

2. θL
i ∼ Nk(µ,Diag(τ−1

1 , . . . , τ−1
k )), where p(µ, τ1, . . . , τk |λM ) =

∏k
i=1[τ

−1
i (τi + ν

λM )−1], with ν

equalling the average number of model runs.

3. log(λb
i) ∼ N(ξ, 4q2), where q is the proportional variation in the bias that is expected among

models (e.g., q = 0.1). A constant prior density is assigned to ξ.

The crucial input needed here is q in Assumption 3. The condition in Assumption 3 implies
that the variance of log(λb

j/λ
b
i ) is 8q2 so that the standard deviation is

√
8q. Therefore log(λb

j/λ
b
i )

is likely to be less than 2q or equivalently 2 log
√

λb
j/λ

b
i < 2q and then

√
λb

j/λ
b
i < eq ∼ 1 + q. So

Assumption 3 is roughly equivalent to saying that the ratio of the standard deviation (SD) of the
biases is less than 1+q or, stated another way, the proportional variation in the bias is q. Specifying
q = 0.1 is stating that the biases are expected to vary by about 10% among the various cases being
considered. Then, also roughly, SD(log

√
λb

j/λ
b
i ) ∼ log SD(

√
λb

j/λ
b
i ) ∼ q or SD(log(λb

j/λ
b
i )) ∼ 2q,

which is a consequence of Assumption 3.
Note that, because of these assumptions, our earlier notation does not need to be changed

to deal with the hierarchical situation (i.e., we simply add the index i corresponding to different
models to the parameters θL, λM and λb that we allow to vary between models).

CRASH: The hierarchical model is as given with q = 0.1, and for the prior on θL, we take
ν = 6.5. The prior distributions are the same as used for the straight frontal analysis, which
are described in Bayarri et al.(2002); this is reasonable, since the priors are relatively non-
informative and the straight frontal dataset is the largest of the 4 categories.

Figure 16 shows the posterior distributions of log λb and θL for individual barrier types.
Note that, while the assumed similarity between the models allows information to be passed
from ‘large data’ to ‘small data’ models, the models are still allowed to vary significantly.
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Figure 16: Posterior distributions for 4 barrier types, based on the hierarchical model.
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